
UCIFF: Unified Clustering,

Instruction scheduling and

Fast Frequency selection for

Heterogeneous Clustered

VLIW

Vasileios Porpodas and Marcelo Cintra

University of Edinburgh

LCPC 2012

slide 1 of 38 www.inf.ed.ac.uk

Scheduling, Scalability and Energy

• Energy becomes a major design constraint
• Dynamic Instruction scheduling in hardware consumes a

large part of the energy budget
• Statically scheduled processors are an energy-efficient

alternative to dynamically scheduled processors
• VLIW processors are high-performance statically

scheduled processors

slide 2 of 38 www.inf.ed.ac.uk

Scheduling, Scalability and Energy

• Energy becomes a major design constraint
• Dynamic Instruction scheduling in hardware consumes a

large part of the energy budget
• Statically scheduled processors are an energy-efficient

alternative to dynamically scheduled processors
• VLIW processors are high-performance statically

scheduled processors

• Resource scalability is necessary for both energy
and performance
• Clustered VLIW processors operate at an attractive

energy-performance point
• No global buses, only point-to-point communication
• Instruction scheduling done by the compiler

slide 2 of 38 www.inf.ed.ac.uk

Clustered VLIW

• Statically scheduled

• Scalable

• Energy efficient

• Inter-Cluster delay
0

ClusterCluster

Cluster Cluster

3

1

2

slide 3 of 38 www.inf.ed.ac.uk

Clustered VLIW

• Statically scheduled

• Scalable

• Energy efficient

• Inter-Cluster delay

• Relies on compiler

• Explicit ILP

0

ClusterCluster

Cluster Cluster

3

1

2

Instr0 Instr1 Instr2 Instr3
VLIW

slide 3 of 38 www.inf.ed.ac.uk

Cluster Utilization

• Few of the clusters are
fully utilized

Free

10 2 3

Busy

Clusters

 I
ns

tr
.

slide 4 of 38 www.inf.ed.ac.uk

Cluster Utilization

• Few of the clusters are
fully utilized

• Slack in schedule

• Opportunity to save
energy without
performance impact

Free

10 2 3

Busy

Clusters

 I
ns

tr
.

slide 4 of 38 www.inf.ed.ac.uk

Heterogeneous Clustered VLIW

• Each cluster operates at
its own frequency

0

ClusterCluster

Cluster Cluster

3

1

2
Freq

Freq Freq

Freq

slide 5 of 38 www.inf.ed.ac.uk

Heterogeneous Clustered VLIW

• Each cluster operates at
its own frequency

• Exploit cluster
under-utilization

• Save energy by slowing
down under-utilized
clusters

0

ClusterCluster

Cluster Cluster

3

1

2
Freq

Freq Freq

Freq

slide 5 of 38 www.inf.ed.ac.uk

The Problem of Energy Efficiency on

Clustered VLIW

• Cluster utilization varies
• Some clusters are fully utilized
• Others are running idle

• Per-cluster DVFS required for energy efficiency
• Hardware DVFS not applicable (breaks semantics)
• Effective compile-time DVFS required

slide 6 of 38 www.inf.ed.ac.uk

Outline

Introduction

Problem Definition and Existing Solutions

UCIFF

Experimental Setup and Results

Conclusion

slide 7 of 38 www.inf.ed.ac.uk

Problem Definition

• How to determine
“best” frequency for
each cluster

• ”Best” freq. is the one
that leads to best
Delay/Energy/ED/ED2

• Determine frequencies
during Instruction
Scheduling

0

ClusterCluster

Cluster Cluster

3

1

2
Freq

FreqFreq

Freq

slide 8 of 38 www.inf.ed.ac.uk

Existing Solution [CGO’07] (Decoupled)

{f0 0, f }

{f0 , f }1

{f0 , f }2

{f 0, f }1

{f , f }1 1

{f , f }1 2

{f 0, f }2

{f , f }2 1

{f , f }2 2F
re

qu
en

y
C

on
fi

gu
ra

ti
on

s

slide 9 of 38 www.inf.ed.ac.uk

Existing Solution [CGO’07] (Decoupled)

{f0 0, f }

{f0 , f }1

{f0 , f }2

{f 0, f }1

{f , f }1 1

{f , f }1 2

{f 0, f }2

{f , f }2 1

{f , f }2 2F
re

qu
en

y
C

on
fi

gu
ra

ti
on

s

1.Freq. Configuration

Estimate
Best

Configuration

(Fx,Fy)

slide 9 of 38 www.inf.ed.ac.uk

Existing Solution [CGO’07] (Decoupled)

1.Freq. Configuration

Estimate
Best

Configuration

(Fx,Fy)

{f0 0, f }

{f0 , f }1

{f0 , f }2

{f 0, f }1

{f , f }1 1

{f , f }1 2

{f 0, f }2

{f , f }2 1

{f , f }2 2F
re

qu
en

y
C

on
fi

gu
ra

ti
on

s

C
lu

st
er

in
g

In
st

r
Sc

he
d

Scheduling

2.Clustered+Scheduled
Code

slide 9 of 38 www.inf.ed.ac.uk

Existing Solution [CGO’07] (Decoupled)

• Phase ordering problem

C
lu

st
er

in
g

In
st

r
Sc

he
d

Scheduling

2.Clustered+Scheduled
Code

1.Freq. Configuration

Estimate
Best

Configuration

(Fx,Fy)

slide 9 of 38 www.inf.ed.ac.uk

Existing Solution [CGO’07] (Decoupled)

• Phase ordering problem

• Estimation of Best freq. requires knowledge of
Performance and Energy

• Performance and Energy measurement requires
schedule

• Scheduling requires that the frequencies are set

C
lu

st
er

in
g

In
st

r
Sc

he
d

Scheduling

2.Clustered+Scheduled
Code

1.Freq. Configuration

Estimate
Best

Configuration

(Fx,Fy)

slide 9 of 38 www.inf.ed.ac.uk

Outline

Introduction

Problem Definition and Existing Solutions

UCIFF

Experimental Setup and Results

Conclusion

slide 10 of 38 www.inf.ed.ac.uk

UCIFF (unified)

• No cyclic dependency

{f0 0, f }

Code
{f0 , f }1

{f0 , f }2

{f 0, f }1

{f , f }1 1

{f , f }1 2

{f 0, f }2

{f , f }2 1

{f , f }2 2F
re

qu
en

y
C

on
fi

gu
ra

ti
on

s

UCIFF
Cluster assignment

+Clustered+Scheduled
Freq. Configuration

Instruction Scheduling
Frequency selection

slide 11 of 38 www.inf.ed.ac.uk

Full-Search Solution

• Brute-force: Try (schedule) all configurations

• After trying all find the best

• Obviously the slowest method

slide 12 of 38 www.inf.ed.ac.uk

Full-Search Solution

0{f 0, f }

{f 0, f }2

0{f , f }

0{f , f }
{f , f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2

ScheduledF
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

 Instr.

1

2

0

slide 12 of 38 www.inf.ed.ac.uk

Full-Search Solution

0{f 0, f }

{f 0, f }2

0{f , f }

0{f , f }
{f , f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2

ScheduledF
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

 Instr.

1

2

0

Schedule

slide 12 of 38 www.inf.ed.ac.uk

Full-Search Solution

0{f 0, f }

{f 0, f }2

E
va

lu
at

e

{f 0, f }2

0{f , f }

0{f , f }
{f , f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2

ScheduledF
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

 Instr.

1

2

0

Schedule

B

Final Schedule

Best Freq ConfigurationB

slide 12 of 38 www.inf.ed.ac.uk

Theoretical Oracle Solution

• A-priori knowledge of the best frequency
configuration

• Schedules only the configuration which will
generate the best schedule

• Fastest but Non-implementable

slide 13 of 38 www.inf.ed.ac.uk

Theoretical Oracle Solution

0{f 0, f }

{f 0, f }2

0{f , f }

0{f , f }
{f , f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2

ScheduledF
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

 Instr.

1

2

0

slide 13 of 38 www.inf.ed.ac.uk

Theoretical Oracle Solution

0{f 0, f }

{f 0, f }2

0{f , f }

0{f , f }
{f , f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2

ScheduledF
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

 Instr.

1

2

0

Schedule

slide 13 of 38 www.inf.ed.ac.uk

Theoretical Oracle Solution

{f 0, f }2 {f 0, f }2

ScheduledF
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

 Instr.

Schedule

B

Final Schedule

slide 13 of 38 www.inf.ed.ac.uk

UCIFF

• Finds a good solution without resorting to
full-search
• Hill-Climbing over frequency configurations
• Partial schedules “STEP” scheduling cycles each
• At the end of each “STEP” it finds the best configuration

and schedules it along with its neighbors for the next
“STEP”

slide 14 of 38 www.inf.ed.ac.uk

UCIFF

0{f 0, f }

{f 0, f }2

STEP STEP STEP

Active Partial Schedule

0{f , f }1

0{f , f }2

{f 0, f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2

Scheduled Instr.F
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

slide 15 of 38 www.inf.ed.ac.uk

UCIFF

0{f 0, f }

{f 0, f }2

STEP STEP STEP

Active Partial Schedule Best Freq ConfigurationB
Neighbor to BN

0{f , f }1

0{f , f }2

{f 0, f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2 B

N

N
E

va
lu

at
e

Scheduled Instr.F
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

slide 15 of 38 www.inf.ed.ac.uk

UCIFF

0{f 0, f }

{f 0, f }2

STEP STEP STEP

Active Partial Schedule Best Freq ConfigurationB
Neighbor to B
Active Set

N
Kill Freq. Configuration

0{f , f }1

0{f , f }2

{f 0, f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2 B

N

N

Scheduled Instr.F
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

slide 15 of 38 www.inf.ed.ac.uk

UCIFF

0{f 0, f }

{f 0, f }2

STEP STEP STEP

Inactive Partial Schedule
Active Partial Schedule Best Freq ConfigurationB

Neighbor to B
Active Set

N
Kill Freq. Configuration

0{f , f }1

0{f , f }2

{f 0, f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2

Scheduled Instr.F
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

slide 15 of 38 www.inf.ed.ac.uk

UCIFF

0{f 0, f }

{f 0, f }2

STEP STEP STEP

N

N

N

B
E

va
lu

at
e

Inactive Partial Schedule
Active Partial Schedule Best Freq ConfigurationB

Neighbor to B
Active Set

N
Kill Freq. Configuration

0{f , f }1

0{f , f }2

{f 0, f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2

Scheduled Instr.F
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

slide 15 of 38 www.inf.ed.ac.uk

UCIFF

0{f 0, f }

{f 0, f }2

STEP STEP STEP

Inactive Partial Schedule
Active Partial Schedule Best Freq ConfigurationB

Neighbor to B
Active Set

N
Kill Freq. Configuration

0{f , f }1

0{f , f }2

{f 0, f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2

Scheduled Instr.F
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

All instructions
scheduled

slide 15 of 38 www.inf.ed.ac.uk

UCIFF

0{f 0, f }

{f 0, f }2

STEP STEP STEP

{f 0, f }2B

E
va

lu
at

e

Final Schedule

Inactive Partial Schedule
Active Partial Schedule Best Freq ConfigurationB

Neighbor to B
Active Set

N
Kill Freq. Configuration

0{f , f }1

0{f , f }2

{f 0, f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }
2

2 2

Scheduled Instr.F
re

qu
en

cy
 C

on
fi

gu
ra

ti
on

s

slide 15 of 38 www.inf.ed.ac.uk

UCIFF

• Benefits of UCIFF hill-climbing:
• More accurate frequency selection than CGO’07 (no

phase-ordering problem)
• Not based on estimation of performance or energy

consumption, it measures the actual schedule.
• Less scheduling time than full-search
• Accuracy close to full-search

slide 16 of 38 www.inf.ed.ac.uk

Outline

Introduction

Problem Definition and Existing Solutions

UCIFF

Experimental Setup and Results

Conclusion

slide 17 of 38 www.inf.ed.ac.uk

Experimental Setup

• Compiler
• GCC-4.5.0
• Modified Haifa-Scheduler
• Energy model built into the scheduler

• Architecture
• IA64-based 4-cluster/4-issue VLIW 1-cycle inter-cluster

delay
• 4 possible frequencies. Fastest:Slowest = 7:4

• Benchmarks
• MediabenchII Video Benchmark suite

• Compare
• Decoupled, Full-Search, Oracle, UCIFF

slide 18 of 38 www.inf.ed.ac.uk

Time Complexity Comparison

 0

 50

 100

 150

 200

 250

 300

Full−Search UCIFF Oracle/Decoupled

Normalized Scheduled Instructions

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

• 5× faster than
Full-Search

• 30× slower than
theoretical oracle

slide 19 of 38 www.inf.ed.ac.uk

Delay Comparison

 1

 1.02

 1.04

 1.06

 1.08

 1.1

Decoupled UCIFF Oracle/Full-Search

Normalized DELAY
• Decoupled about

5% worse than
Oracle

• UCIFF almost
identical to Oracle

• Delay is biased
towards high
frequencies

slide 20 of 38 www.inf.ed.ac.uk

ED2 Comparison

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

Decoupled UCIFF Oracle/Full-Search

Normalized ED2

• Decoupled 1.6×
worse than oracle

• UCIFF within 5%
of Oracle

• ED2 is hard to
estimate

slide 21 of 38 www.inf.ed.ac.uk

Delay Estimation Accuracy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%

%
 o

f e
st

im
at

io
ns

 w
ith

in
 r

an
ge

Error Margin

(DECOUPLED, DELAY)

• Decoupled: only
60% of
estimations are
the same as
Oracle

slide 22 of 38 www.inf.ed.ac.uk

Delay Estimation Accuracy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%

%
 o

f e
st

im
at

io
ns

 w
ith

in
 r

an
ge

Error Margin

(UCIFF, DELAY)

• Decoupled: only
60% of
estimations are
the same as
Oracle

• UCIFF very close
to Oracle (90%)

slide 22 of 38 www.inf.ed.ac.uk

ED
2 Estimation Accuracy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%%
 o

f e
st

im
at

io
ns

 w
ith

in
 m

ar
gi

n

Error Margin

(DECOUPLED, ED2)

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

• Decoupled is very
inaccurate 40% of
estimations within
25% of the Oracle

slide 23 of 38 www.inf.ed.ac.uk

ED
2 Estimation Accuracy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%%
 o

f e
st

im
at

io
ns

 w
ith

in
 m

ar
gi

n

Error Margin

(UCIFF, ED2)

• Decoupled is very
inaccurate 40% of
estimations within
25% of the Oracle

• UCIFF is at 95%
within 25% of
Oracle

slide 23 of 38 www.inf.ed.ac.uk

Conclusion

• Proposed UCIFF, a unified scheduling algorithm
that
• Performs cluster assignment
• Performs instruction scheduling
• Selects cluster frequencies

in a heterogeneous clustered VLIW

• UCIFF is more accurate and generates better
schedules than the current state-of-the-art

• UCIFF is faster than Full-Search while generating
code of equivalent quality

slide 24 of 38 www.inf.ed.ac.uk

UCIFF: Unified Clustering,

Instruction scheduling and

Fast Frequency selection for

Heterogeneous Clustered

VLIW

Vasileios Porpodas and Marcelo Cintra

University of Edinburgh

LCPC 2012

slide 25 of 38 www.inf.ed.ac.uk

Backup slides

• Bibliography

• CGO’07 Estimations

• Scheduling for heterogeneous (various freq.)

• UCIFF Energy Model

• DVFS regions

• UCIFF Neighbors

• UCIFF Algorithm

slide 26 of 38 www.inf.ed.ac.uk

Bibliography

• [CGO’07] A. Aleta, J. Codina, A. Gonzalez, and D.
Kaeli. Heterogeneous clustered vliw
microarchitectures. In CGO, pages 354-366, 2007.

Backup Slides

slide 27 of 38 www.inf.ed.ac.uk

CGO’07 Energy & Performance Estimation
• Performance Estimation:

1 Perform Scheduling on a homogeneous architecture
2 Cycles = cycles of homogeneous multiplied by the

arithmetic mean of the clock periods of the heterogeneous
clusters: Time = cycleshom × (

∑
cl Tcl)/NumOfClusters

• Energy Estimation (similar to UCIFF except:)
1 Dynamic energy of cluster is equal to a fraction of that of

the homogeneous cluster, proportional to the ratio of the
cluster’s frequency to the average frequency:
Edyn,ins(cl) =
Edyn,ins hom(cl) × fcl/[

∑
cl(fcl)/NumOfClusters]

2 Energy of interconnect is equal to that of the
homogeneous Edyn,icc = Picc × NumICCshomogeneous

Backup Slides

slide 28 of 38 www.inf.ed.ac.uk

Scheduling for clusters of various Freq.
• Scheduler’s internal frequency is the lowest integer

common multiple of all possible frequencies of all
clusters (Tsched)

• Instruction latencies are specific to each cluster and
are a multiple of the original latencies:
Tcl/Tsched × Original Latency

11

22

1 1

Tsched

3

Scheduling Slot
Instr. 1, latency 1
Instr. 2, latency 2
Instr. 3, latency 1

2

2

3

3

Tcl0
Freq:

Tcl1
Freq:1.5 ff

1

2

1

2

3 3

Freq:f Freq:

Tsched

Tcl0 Tcl1
f

HeterogeneousHomogeneous

Backup Slides
slide 29 of 38 www.inf.ed.ac.uk

DVFS Region

• Scheduling regions are too small for DVFS (H/W
limitation)

• Possible solutions:
• Micro-Architecture: Push DVFS points into a FIFO queue

and take the average
• Software1: Sampling at a rate acceptable by H/W
• Software2: Get an average single DVFS point for the

whole program

Backup Slides

slide 30 of 38 www.inf.ed.ac.uk

UCIFF Energy Model

• Total Energy:
• E =

∑
clusters [Est(cl) + Edyn(cl)]

• Static Energy:
• Est(cl) = Pst × cyclescl × Tcl

• Pst(cl) = Cst × Vcl

• Dynamic Energy:
• Edyn(cl) = Edyn,ins(cl) + Edyn,icc

• Edyn,ins(cl) =
∑

ins [Pins(cl) × Latency(ins, cl)]
• Pins(cl) = Cdyn × fcl × V 2

cl

• Edyn,icc = Picc × NumICCs
• Picc = Cdyn × ffastest × V 2

fastest

Backup Slides

slide 31 of 38 www.inf.ed.ac.uk

UCIFF Neighbors

• The Configuration
{fna, fnb, fnc , ...} is a
UCIFF neighbor of
{fa, fb, fc , ...} if nx = x

for all x except one (say
y) such that
|ny − y | < NDistance. Freq. configuration

Neighbors of

f0 f1 f2

f0

f1

f2

f3

f3

Backup Slides

slide 32 of 38 www.inf.ed.ac.uk

1 /* Unified Cluster assignment Instr. Scheduling and Fast Frequency selection.
2 In1: METRIC_TYPE that the scheduler should optimize for.
3 In2: Schedule STEP instructions before evaluating and getting the best.
4 In3: STEPVAR: Decrement STEP by STEPVAR upon each evaluation.
5 In4: NEIGHBORS: The number of neighbors per cluster.
6 Out: Scheduled Code and Best Frequency Configuration. */
7 uciff (METRIC_TYPE, STEP, STEPVAR, NEIGHBORS)
8 {
9 Schedule for STEP cycles and find the Best Freq Configuration (BFC)

10 do
11 if (BFC not set) /* If first run */
12 NEIGHBORS_SET = all frequency configurations
13 else
14 NEIGHBORS_SET = neighbors of BFC /*up to NEIGHBORS per cluster*/
15 for FCONF in NEIGHBORS_SET
16 /* Partially schedule the ready instructions of FCONF frequency

→֒configuration for STEP cycles, optimizing METRIC_TYPE */
17 SCORE = cluster_and_schedule (METRIC_TYPE, STEP, FCONF)
18 Store the scheduler’s calculated SCORE into SCORECARD [FCONF]
19 Decrement STEP by STEPVAR until 1. /* Variable steps (optional) */
20 BFC = Best Freq Configuration of SCORECARD, clear SCORECARD
21 while there are unscheduled instructions in active set
22 return BFC and scheduled code of BFC
23 }

Backup Slides

slide 34 of 38 www.inf.ed.ac.uk

1 /* In1: METRIC_TYPE: The metric type that the scheduler will optimize for.
2 In2: STEP: Num of instrs to schedule before switching to next freq. conf.
3 In3: FCONF: The architecture’s current frequency configuration.
4 Out: Scheduled Code and metric value. */
5 cluster_and_schedule (METRIC_TYPE, STEP, FCONF)
6 {
7 /* Restore ready list for this frequency configuration */
8 READY_LIST = READY_LIST_ARRAY [FCONF]
9 /* Restore current cycle. CYCLE is the scheduler’s internal cycle. */

10 CYCLE = LAST_CYCLE [FCONF]
11 Restore the Reservation Table state that corresponds to FCONF
12 while (instructions left to schedule && STEP > 0)
13 update READY_LIST with ready to issue at CYCLE, include deferred
14 sort READY_LIST based on list-scheduling priorities
15 while (READY_LIST not empty)
16 select INSN, the highest priority instruction from the READY_LIST
17 create LIST_OF_CLUSTERS[] that INSN can be scheduled at on CYCLE
18 BEST_CLUSTER=best of LIST_OF_CLUSTERS[] by comparing for each cluster

→֒calculate_heuristic(METRIC_TYPE,CLUSTER,FCONF,INSN,IPCL[])
19 /* Try scheduling INSN on the best cluster */
20 if (INSN can be scheduled on BEST_CLUSTER at CYCLE)
21 schedule INSN, occupy LATENCY[FCONF][BEST_CLUSTER][INSN] slots
22 IPCL [CLUSTER] ++ /* count number of instructions per cluster */
23 remove INSN from READY_LIST
24 /* If failed to schedule INSN on best cluster, defer to next cycle */
25 if (INSN unscheduled)
26 remove INSN from READY_LIST and re-insert it at CYCLE + 1
27 /* No instructions left in ready list for CYCLE, then CYCLE ++ */
28 CYCLE ++
29 /* If we have scheduled for STEP cycles, finalize and exit */
30 if (CYCLE $>$ LAST_CYCLE[FCONF] + STEP)
31 Update READY_LIST_ARRAY[], LAST_CYCLE[] and Reservation Table
32 return
33 }

slide 36 of 38 www.inf.ed.ac.uk

1 /* In1: METRIC_TYPE: The metric type that the scheduler will optimize for.
2 In2: CLUSTER: The cluster that INSN will be tested on.
3 In3: FCONF: The architecture’s current frequency configuration.
4 In4: INSN: The instruction currently under consideration.
5 In5: IPCL: The Instruction count Per CLuster (for dyn energy).
6 Out: metric value of METRIC_TYPE if INSN scheduled on CLUSTER under FCONF*/
7 calculate_heuristic (METRIC_TYPE, CLUSTER, FCONF, INSN, IPCL[])
8 {
9 START_CYCLE = earliest cycle INSN can be scheduled at on CLUSTER

10 UCIFF_SC = START_CYCLE + LATENCY[FCONF][CLUSTER][INSN]
11 switch (METRIC_TYPE)
12 case ENERGY: return energy (CLUSTER, FCONF, UCIFF_SC, IPCL[])
13 case EDP: return edp (CLUSTER, FCONF, UCIFF_SC, IPCL[])
14 case ED2: return ed2 (CLUSTER, FCONF, UCIFF_SC, IPCL[])
15 case DELAY: return UCIFF_SC
16 }

Backup Slides

slide 38 of 38 www.inf.ed.ac.uk

	Introduction
	Problem Definition and Existing Solutions
	UCIFF
	Experimental Setup and Results
	Conclusion

