
UCIFF: Unified Cluster assignment Instruction

scheduling and Fast Frequency selection for

heterogeneous clustered VLIW cores ⋆

Vasileios Porpodas and Marcelo Cintra⋆⋆

School of Informatics, University of Edinburgh
{v.porpodas@, mc@staffmail.}ed.ac.uk

Abstract. Clustered VLIW processors are scalable wide-issue statically
scheduled processors. Their design is based on physically partitioning
the otherwise shared hardware resources, a design which leads to both
high performance and low energy consumption. In traditional clustered
VLIW processors, all clusters operate at the same frequency. Heteroge-
neous clustered VLIW processors however, support dynamic voltage and
frequency scaling (DVFS) independently per cluster. Effectively control-
ling DVFS, to selectively decrease the frequency of clusters with a lot of
slack in their schedule, can lead to significant energy savings.
In this paper we propose UCIFF, a new scheduling algorithm for het-
erogeneous clustered VLIW processors with software DVFS control, that
performs cluster assignment, instruction scheduling and fast frequency
selection simultaneously, all in a single compiler pass. The proposed algo-
rithm solves the phase ordering problem between frequency selection and
scheduling, present in existing algorithms. We compared the quality of
the generated code, using both performance and energy-related metrics,
against that of the current state-of-the-art and an optimal scheduler.
The results show that UCIFF produces better code than the state-of-
the-art, very close to the optimal across the mediabench2 benchmarks,
while keeping the algorithmic complexity low.

Keywords: clustered VLIW, heterogeneous, DVFS, scheduling, phase-ordering

1 Introduction

Energy consumption has become an important design constraint for microproces-
sors. Clustered VLIW processors were introduced with performance and energy
scalability in mind: i. They are statically scheduled, which removes the instruc-
tion scheduling burden from the micro-architecture. ii. The clustered design im-
proves energy efficiency, operating frequency and reduces design complexity[17].
Clustered VLIW processors operate at an attractive power/performance ratio
point. Examples are the Texas Instrument’s VelociTI, HP/ST’s Lx [6], Analog’s
TigerSHARC [7], and BOPS’ ManArray [15].

A clustered processor has its shared non-scalable resources (such as the reg-
ister file which is shared among functional units) partitioned into smaller parts.
Each part of the partitioned resource, along with some of the resources that

⋆ This work was supported in part by the EC under grant ERA 249059 (FP7).
⋆⋆ Marcelo Cintra is currently on sabbatical leave at Intel Labs.

2 Vasileios Porpodas and Marcelo Cintra

communicate with it are grouped together into a cluster. For example a clus-
ter often contains a slice of the register file along with several functional units.
Within a cluster signals travel fast, faster than in the shared resource case, and
energy consumption remains low, due to the improved locality. Between clusters,
communication is subject to an inter-cluster delay and there is additional energy
consumption on the inter-cluster interconnect.

Traditionally, all clusters of a clustered VLIW processor operate at the same
frequency and voltage. Considerable energy savings can be achieved by freeing
each cluster to operate at its own frequency and voltage level. The reason for this
is that the cluster utilization usually varies; some clusters are fully loaded while
others have a fraction of the load. It is therefore sensible to lower the frequency
of the under-utilized clusters to save energy.

In this paper we raise an important issue of the existing compilation tech-
niques for heterogeneous clustered VLIW processors. Compiling for these archi-
tectures comprises of solving two distinct but highly dependent sub-problems:

1. Selecting the frequency that each cluster should operate at.

2. Performing cluster assignment and instruction scheduling for the selected
frequencies (we refer to both as “scheduling” for simplicity).

There is a phase-ordering issue between these two sub-problems: A. One
cannot properly select the frequencies per cluster without scheduling and eval-
uating the schedule. B. One cannot perform scheduling without having decided
on the frequencies.

State-of-the-art work in this field ([2]) treats these two sub-problems inde-
pendently and solves the first (1.) before the second (2.). At first a good set of
frequencies is found by estimating the scheduling outcome for each configura-
tion (without actually scheduling). Then scheduling is performed for this set of
frequencies. We will refer to this approach as the “Decoupled” one.

The problem is that the frequency decision (1.) has a great impact on the
quality of scheduling (2.). We observed that the estimation of the scheduling out-
come without performing the actual scheduling, as done in [2], can be inaccurate.
Nevertheless, it is a critical compilation decision since selecting a non-optimal
frequency set can lead to a schedule with poor performance, energy consumption
or both.

In this work we provide a more concrete solution to the problem by solving
both sub-problems (frequency selection and scheduling) in a single algorithm
thus alleviating the phase-ordering issue altogether. The proposed scheduling
algorithm for heterogeneous clustered VLIW processors performs cluster assign-
ment, instruction scheduling and fast frequency selection, all in a unified algo-
rithm, as a unified scheduling pass.

The algorithm can be configured to generate optimized code for any of the
commonly used metrics (Energy, Energy×Delay Product (EDP) and Energy×
Delay2 (ED2), Delay). The output of the algorithm is twofold: i. The operating
frequency of each cluster such that the scheduling metric is optimized. ii. Fully
clustered and scheduled code for the frequencies selected by (i).

In the text that follows we use the terms “frequencies per cluster”, “set of
frequencies” and “frequency configuration” interchangeably.

UCIFF 3

2 Motivation

2.1 Homogeneous vs Heterogeneous

This section motivates the heterogeneous clustered VLIW design by demonstrat-
ing how energy can be saved without sacrificing performance in the example of
Fig.1.

Fig.1a is the Data Flow Graph (DFG) to be scheduled. Fig.1b,c show the
instruction schedules that correspond to this DFG on a two-clustered machine
(single-issue per-cluster). Fig.1b is the homogeneous design with both clusters
operating at the same frequency (f), while Fig.1c is the heterogeneous one with
ClusterB operating at half the frequency of ClusterA (f/2). Nevertheless both
configurations have the same performance as the schedule length is 4 cycles
for both. The heterogeneous can perform as well as the homogeneous because
ClusterB was initially under-utilized (there was slack in part of the schedule).

X

3

2
1
0 E

C

B

A E

3

2
1
0

D

a. DFG

Data Dependency

Issue Slot

Cluster

b. Clusters A,B at same frequencies c. ClusterB at half the frequency

3

2
1
0 A

B

C

D

Freq: ffFreq:

Homogeneous Heterogeneous

Instruction Node
ClusterBClusterA

1

0
A
B
C
D

E

Freq: Freq: f/2f

ClusterA ClusterB

Fig. 1. Under-utilized ClusterB can have half the frequency with no performance loss.

Since the target architecture is a statically scheduled clustered VLIW one, it
is the job of the scheduler to find the best frequency for each cluster so that the
desired metric (Energy, EDP, ED2, Delay) is optimized.

2.2 Phase Ordering

As already discussed in Section 1, there is a phase ordering issue between fre-
quency selection and instruction scheduling. Fig.2 shows a high-level view of the
scheduling algorithms for a 2-cluster processor with 3 possible frequencies per
cluster (f0, f1, f2).

The Decoupled algorithm (existing state-of-the-art based on [2]) is in Fig.2a.
As already mentioned, there are two distinct steps:

1. The first step selects one of the many frequency configurations as the one
that should be the best for the given metric (e.g. EDP). This is based on
a simple estimation (before scheduling) of the schedule time (cycles × T)
and energy consumption that the code will have after scheduling. The exact
calculations are described in detail in Section 5:Decoupled.

2. The second step performs scheduling on the architecture configuration se-
lected by step 1. This includes both cluster assignment and instruction
scheduling, which in an unmodified [2] are in two separate steps.

It is obvious that if step (1) makes a wrong decision (which is very likely
since the decision is based on a simple estimate), then the processor will operate
at a point far from the optimal one. Therefore step (2) will schedule the code for
a non-optimal frequency configuration which will lead to a non-optimal result.

4 Vasileios Porpodas and Marcelo Cintra

This phase-ordering issue is dealt with by UCIFF, the proposed unified fre-
quency selection and scheduling algorithm (Fig.2b). The proposed algorithm
solves the two sub-problems simultaneously and outputs a combined solution
which is both the frequency configuration (that is the frequency for each clus-
ter) and the scheduled code for this specific configuration.

{f0 0, f }

{f0 , f }1

{f0 , f }2

{f 0, f }1

{f , f }1 1

{f , f }1 2

{f 0, f }2

{f , f }2 1

{f , f }2 2

{f0 0, f }

{f0 , f }1

{f0 , f }2

{f 0, f }1

{f , f }1 1

{f , f }1 2

{f 0, f }2

{f , f }2 1

{f , f }2 2

(Fx,Fy)

Configuration
Best

Estimate AND

Select Best Frequency

Configuration

F
re

q
u

en
y

 C
o

n
fi

g
u

ra
ti

o
n

s

F
re

q
u

en
y

 C
o

n
fi

g
u

ra
ti

o
n

s

a. Decoupled Frequency selection and Scheduling. b. UCIFF: Unified Frequency selection and Scheduling.

UCIFF
Cluster + Schedule

2.Clustered+Scheduled Code

1.Frequency Configuration

AND

C
lu

st
er

in
g

In
st

r
S

ch
ed

1.Frequency Configuration

Scheduling

2.Clustered+Scheduled Code

Fig. 2. The two-phase scheduling of the current state-of-the-art (a). The proposed
unified approach (b) is free of this phase-ordering problem.

3 UCIFF

The proposed Unified algorithm for Cluster assignment, Instruction scheduling
and Fast Frequency selection (UCIFF) can be more easily explained if two of
its main ingredients are explained separately. That is: i. scheduling for a fixed
heterogeneous processor and ii. unifying scheduling and frequency selection.

3.1 Scheduling for fixed heterogeneous processors

An out-of-the-box scheduler for a clustered architecture can only handle the
homogeneous case, where all clusters operate at the same frequency. A hetero-
geneous architecture on the other hand, has different frequencies across clusters.
This is because schedulers work in a cycle-by-cycle manner. They schedule ready
instructions on Free cluster resources and move to the next cycle. This cycle-
by-cycle operation is inapplicable when clusters operate at different frequencies.
The problem gets worse if cluster frequencies are not integer multiples of one
another (e.g. cluster 0 operating at frequency f and cluster 1 at 1.5f).

UCIFF introduces a scheduling methodology for heterogeneous clustered ar-
chitectures with arbitrary frequencies per cluster which can be applied to existing
scheduling algorithms. The idea is that the scheduler operates at a higher base
frequency (fsched) such that the clock period of any cluster is an integer multiple
of the clock period of the scheduler (Tsched). It works in two steps:

i. The scheduler’s base frequency fsched is calculated as the lowest integer
common multiple of all possible frequencies of all clusters. The scheduler inter-
nally works at a cycle Tsched = 1/fsched , which is always an integer multiple
of the cycle that each cluster operates at. For example in Fig.3b the scheduler’s
base cycle is Tsched while the cycles of cluster0 and cluster1 are 3 × Tsched and
2 × Tsched respectively.

UCIFF 5

1 1

Tsched

Tsched=Tcl1=Tcl0

f
sched =3 f

Scheduling Slot

11

22

2

2

Tcl0
Tcl1

cluster0 cluster1

Heterogeneous

b. Scheduling for Heterogeneous

1

2

1

2

Tsched

Tcl1Tcl0

cluster0 cluster1

Homogeneous

a. Scheduling for Homogeneous

Freq: Freq:f f Freq: Freq:1.5 ff

Tcl1=2Tsched

Tcl0=3Tsched

3 3

Instr. 2, latency 2

Instr. 3, latency 1

Instr. 1, latency 1

3

3

3

Fig. 3. The scheduler’s internal clock period Tsched compared to the periods of the two
clusters Tcl0 and Tcl1, for a homogeneous (a) and a heterogeneous (b) architecture.

ii. The instruction latencies for each cluster are increased and set to be a
multiple of the original one, equal to (Tcluster/Tsched) × OrigLatency. In the
example of Fig.3, the instruction latencies for cluster0 are multiplied by 3 while
the ones for cluster1 are multiplied by 2.

In this way the problem of scheduling for different frequencies per cluster is
transformed to the problem of scheduling instructions of various latencies, which
is a solved problem and is indeed supported by any decent scheduler.

3.2 Scheduling for non-fixed heterogeneous processors (UCIFF)

In contrast to the existing state-of-the-art, UCIFF solves the phase-ordering
problem between frequency selection and scheduling. It does so by combining
them into a single unified algorithm. In addition, the scheduling algorithm per-
forms cluster assignment and instruction scheduling together thus removing any
phase ordering issues between all clustering, scheduling and frequency selection.

The UCIFF algorithm is composed of three nested layers: The driver function
(Alg.1) at the outermost layer, the clustering and scheduling function (Alg.2) at
the second layer and the metric calculation function (Alg.3) at the innermost.

1. The driver: The highest level of the UCIFF algorithm (Alg.1) performs
the frequency selection. It decides on a single frequency configuration for the
whole scheduling region. Instead of solving the global optimization problem, of
determining the optimal frequency, with a full-search over all configurations,
UCIFF uses a fast hill climbing approach.

Hill climbing, in general, searches for a globally good solution by evaluating,
at each point, its neighbors and by “moving” towards the best among them.
Due to the nature of the problem, trying out a large number of neighbors is
computationally expensive. This is because we cannot evaluate a configuration
at cycle c unless we schedule all instructions up to c. This makes probabilistic
algorithms (such as simulated annealing) very expensive since trying out random
configurations will lead to almost the whole configuration space being scheduled
to a very large extent, thus leading to a time complexity comparable to that of
the full-search.

Formally, a frequency configuration is an ordered multiset of each cluster’s
frequency: {fa, fb, fc, ...}. Each of fa, fb, fc, ... is one of the l valid frequency levels
in the set {f0, f1, ..., fl−1}. For example a valid configuration for a 2-cluster

6 Vasileios Porpodas and Marcelo Cintra

machine with 3 possible frequency levels (f0, f1, f2) is {f2, f0} (where clusters
0,1 operate at f2, f0 frequencies respectively).

The neighbors of a configuration c are the configurations which are close
frequency-wise to c. More precisely, the configuration {fna, fnb, fnc, ...} is a
UCIFF neighbor of {fa, fb, fc, ...} if nx = x for all x except one (say y) such that
|ny−y| < NDistance. For example, the neighbors of {f1, f1} for NDistance = 1
are {f0, f1}, {f2, f1}, {f1, f0} and {f1, f2}.

In UCIFF the hill climbing search is done gradually, in steps of cycles, while
the code gets scheduled for the duration of the step. After each step there is
an evaluation. We refer to this step-evaluation-step approach as “gradual hill
climbing” and to the act of scheduling within a step as “partial scheduling”.
This makes UCIFF fast and accurate. The hill climbing search stops when all
instructions of the best neighbors have been scheduled. All of the above will be
further explained through the following example.

0{f 0, f }

{f 0, f }2 {f 0, f }2

Active Partial Schedule
Inactive Partial Schedule Neighbor to B

Best Freq Configuration
N
B Kill Freq. Configuration

Active Set

F
re

q
u

en
cy

 C
o

n
fi

g
u

ra
ti

o
n

s 0{f , f }1

0{f , f }2

{f 0, f }1

, f }{f 1 1

{f , f }1 2

{f , f }1

{f , f }

2

2 2

N

STEP STEP

N

N

B

B

N

N

B

Final Schedule

STEPSTEP STEP STEP End of
Scheduling

Step 1 Step 2 Step 3

E
v

a
lu

a
te

E
v

a
lu

a
te

E
v

a
lu

a
te

Instructions
Scheduled

Fig. 4. Overview of the UCIFF gradual hill climbing algorithm for a schedule that
consists of three steps.

A high level example of the UCIFF algorithm for the 2-cluster machine of
Fig.2 is illustrated in Fig.4. On the vertical axis there are all 9 possible frequency
configurations. The horizontal axis represents the scheduler’s cycles (of Tsched

duration). The partial schedule of each configuration is a horizontal line that
starts from the vertical axis at the configuration point and grows to the right.
The evaluation (every STEP instructions) is represented by the vertical gray
line.

At first (Step 1) all configurations are partially scheduled for “STEP” in-
structions. Once partially scheduled, they are evaluated and the best config-
uration is found and marked as “B”. At this point the neighbors of “B” are
found, according to the definition given earlier. The neighbors are marked as
“N”. The neighbors (“N”) along with the best (“B”) form the active set. The
configurations not in the active set are marked with a red “X”.

In Step2 the configurations in the active set get partially scheduled for an-
other “STEP” instructions (curly red lines). They get evaluated and the best
one (“B”) and its neighbors (“N”) are found.

In Step3 the active set of Step2 gets partially scheduled for another “STEP”
instructions. At this point it is interesting to note that {f2, f0} and {f1, f1} have
to be scheduled for both the 2nd and 3rd “STEP”. Now there are no instructions

UCIFF 7

left to schedule for the active configurations, therefore the algorithm terminates.
After the final evaluation, the best configuration of the active set is found (“B”,
{f2, f0}). The full schedule for this configuration is returned (gold rectangle).

Note that the bar lengths are not proportional to any metric value. They
just show the progress of the algorithm while instructions get scheduled.

The detailed algorithm is listed in Alg.1. The algorithm initially performs
partial scheduling of all frequency configurations for “STEP” instructions (Alg.1
lines 11, 14-20). This determines the best configuration and stores it into “BFC”.
For the rest of the algorithm, each frequency configuration in the neighboring
set of “BFC” (lines 13,14) gets partially scheduled for “STEP” instructions and
evaluated (lines 15,16). The best performing of the neighbors gets stored into
“BFC” (line 19). The algorithm repeats until no instructions in the neighboring
set of “BFC” (a.k.a. active set) are left unscheduled (line 20). Each iteration of
the algorithm decreases “STEP” by “STEPVAR” (line 18) so that re-evaluation
of the schedules keeps getting more frequent. This makes the algorithm track
the best configuration faster.

This gradual hill-climbing process accurately selects a good configuration
among many without resorting to a full-search across all frequency configura-
tions. The end result is a fully scheduled code for the selected configuration.

It is interesting to note that partial scheduling of all neighbors could be done
in parallel. This could speed up the UCIFF scheduler, to reach speeds close to
those of the Oracle.

Algorithm 1. UCIFF

1 /* Unified Cluster assignment Instr. Scheduling and Fast Frequency selection.
2 In1: METRIC_TYPE that the scheduler should optimize for.
3 In2: Schedule STEP instructions before evaluating and getting the best.
4 In3: STEPVAR: Decrement STEP by STEPVAR upon each evaluation.
5 In4: NEIGHBORS: The number of neighbors per cluster.
6 Out: Scheduled Code and Best Frequency Configuration. */
7 uciff (METRIC_TYPE, STEP, STEPVAR, NEIGHBORS)

8 {

9 do

10 if (BFC not set) /* If first run */
11 NEIGHBORS_SET = all frequency configurations

12 else

13 NEIGHBORS_SET = neighbors of BFC /*up to NEIGHBORS per cluster*/
14 for FCONF in NEIGHBORS_SET

15 /* Partially schedule the ready instructions of FCONF frequency
→֒configuration for STEP instructions, optimizing METRIC_TYPE
→֒*/

16 SCORE = cluster_and_schedule (METRIC_TYPE, STEP, FCONF)

17 Store the scheduler’s calculated SCORE into SCORECARD [FCONF]

18 Decrement STEP by STEPVAR until 1. /* Variable steps (optional) */
19 BFC = Best Freq Configuration of SCORECARD, clear SCORECARD

20 while there are unscheduled instructions in active set

21 return BFC and scheduled code of BFC

22 }

2. The Core: At one level lower lies the core of the scheduling algorithm (Alg.2).
It is a unified cluster assignment and scheduling algorithm which shares
some similarities with UAS [14] but has several unique attributes: i. It operates
on a heterogeneous architecture where clusters operate at different frequencies
(as described in Section 3.1). ii. It only issues an instruction to the cluster
chosen by the heuristic. It does not try to issue on any other cluster if it cannot
currently issue on the chosen cluster. iii. It is capable of performing partial
scheduling for “STEP” number of instructions. iv. It can optimize for various
metrics (not just Delay). This includes energy related ones: Energy, EDP, ED2.

8 Vasileios Porpodas and Marcelo Cintra

v. The start cycle calculation is extended to work for heterogeneous clusters,
which is done by adding to it the latency of the instruction on that cluster (see
Alg.3 line 10).

In more detail, the algorithm is a list-scheduling based one, that operates on
a ready list. The scheduler performs partial scheduling on each active frequency
configuration for a small window of “STEP” instructions. Once a (configuration,
cycle) pair is scheduled it is never revisited. Switching among configurations
requires that the scheduler maintains a private instance of its data structures
(ready list, reservation table, current cycle) for each configuration. To that end, it
saves and restores the snapshot of its structures upon entry and exit (Alg.2 lines
7-11, 31). The ready list gets filled in with ready and deferred instructions (line
13). Then it gets sorted based on priority (calculated on the Data Dependence
Graph) (line 14) and the highest priority one is selected for scheduling (line 16).
A list of candidate clusters is created (line 17) and the best cluster is found based
on the values of the metric used for scheduling (line 18). The instruction is then
tried on the best cluster at the current cycle (lines 19,20). If successful, then its
presence in the schedule is marked on the reservation table for as many cycles as
its latency as specified by LATENCY [] array (line 21), the IPCL (Instructions
Per CLuster) counts the issued instruction (line 22), and INSN gets removed
from the ready list (line 23). If unsuccessful, INSN’s execution is deferred to
next cycle (lines 24-26). We move to the next cycle only if the current ready list
is empty (lines 27-28).

Algorithm 2. Clustering and Scheduling for various metrics.

1 /* In1: METRIC_TYPE: The metric type that the scheduler will optimize for.
2 In2: STEP: Num of instrs to schedule before switching to next freq. conf.
3 In3: FCONF: The architecture’s current frequency configuration.
4 Out: Scheduled Code and metric value. */
5 cluster_and_schedule (METRIC_TYPE, STEP, FCONF)

6 {

7 /* Restore ready list for this frequency configuration */
8 READY_LIST = READY_LIST_ARRAY [FCONF]

9 /* Restore current cycle. CYCLE is the scheduler’s internal cycle. */
10 CYCLE = LAST_CYCLE [FCONF]

11 Restore the Reservation Table state that corresponds to FCONF

12 while (instructions left to schedule && STEP > 0)

13 update READY_LIST with ready to issue at CYCLE, include deferred

14 sort READY_LIST based on list-scheduling priorities

15 while (READY_LIST not empty)

16 select INSN, the highest priority instruction from the READY_LIST

17 create LIST_OF_CLUSTERS[] that INSN can be scheduled at on CYCLE

18 BEST_CLUSTER=best of LIST_OF_CLUSTERS[] by comparing for each cluster

→֒ calculate_heuristic(METRIC_TYPE,CLUSTER,FCONF,INSN,IPCL[])

19 /* Try scheduling INSN on the best cluster */
20 if (INSN can be scheduled on BEST_CLUSTER at CYCLE)

21 schedule INSN, occupy LATENCY[FCONF][BEST_CLUSTER][INSN] slots

22 IPCL [CLUSTER] ++ /* count number of instructions per cluster */
23 remove INSN from READY_LIST

24 /* If failed to schedule INSN on best cluster, defer to next cycle */
25 if (INSN unscheduled)

26 remove INSN from READY_LIST and re-insert it at CYCLE + 1

27 /* No instructions left in ready list for CYCLE, then CYCLE ++ */
28 CYCLE ++

29 /* If we have scheduled STEP instructions, finalize and exit */
30 if (instr. scheduled > STEP instructions)

31 Update READY_LIST_ARRAY[], LAST_CYCLE[] and Reservation Table

32 return metric value of current schedule

33 }

3. The metrics: The combined clustering and scheduling algorithm used in
UCIFF is a modular one. It can optimize the code not only for cycle count, but

UCIFF 9

also for several other metrics that are useful in the context of a heterogeneous
clustered VLIW. It supports energy-related metrics (Energy, EDP, ED2) and
also execution Delay (Alg.3). The metric type controls the clustering heuristic
which decides on the BEST CLUSTER in Alg.2 line 18.

The energy-related metrics require that the scheduler have an energy model
of the resources. The energy model is a small module in the scheduling algorithm
and it is largely decoupled from the structure of the algorithm. The energy
is calculated as the sum of the static and dynamic energy consumed by the
clusters and the inter-cluster communication network. Static energy consumption
is relative to the time period that the system is “on”. Each instruction that
executes on a cluster consumes dynamic energy relative to its latency. Each inter-
cluster communication consumes dynamic energy as much as an instruction of
the fastest cluster. The exact formulas for these calculations are in Table 1.

E =
P

clusters
[Est(cl) + Edyn(cl)]

Est(cl) = Pst × cyclescl × Tcl Edyn(cl) = Edyn,ins(cl) + Edyn,icc

Pst(cl) = Cst × Vcl Edyn,ins(cl) =
P

ins
[Pins(cl) × Latency(ins, cl)]

Pins(cl) = Cdyn × fcl × V 2

cl

Edyn,icc = Picc × NumICCs

Picc = Cdyn × ffastest × V 2

fastest

Table 1. Formulas for energy calculation.

Algorithm 3. Heuristic calculation.

1 /* In1: METRIC_TYPE: The metric type that the scheduler will optimize for.
2 In2: CLUSTER: The cluster that INSN will be tested on.
3 In3: FCONF: The architecture’s current frequency configuration.
4 In4: INSN: The instruction currently under consideration.
5 In5: IPCL: The Instruction count Per CLuster (for dyn energy).
6 Out: metric value of METRIC_TYPE if INSN scheduled on CLUSTER under FCONF*/
7 calculate_heuristic (METRIC_TYPE, CLUSTER, FCONF, INSN, IPCL[])

8 {

9 START_CYCLE = earliest cycle INSN can be scheduled at on CLUSTER

10 UCIFF_SC = START_CYCLE + LATENCY[FCONF][CLUSTER][INSN]

11 switch (METRIC_TYPE)

12 case ENERGY: return energy (CLUSTER, FCONF, UCIFF_SC, IPCL[])

13 case EDP: return edp (CLUSTER, FCONF, UCIFF_SC, IPCL[])

14 case ED2: return ed2 (CLUSTER, FCONF, UCIFF_SC, IPCL[])

15 case DELAY: return UCIFF_SC

16 }

3.3 DVFS region

UCIFF determines the best frequency configuration at a per-scheduling-region
basis. This is the natural granularity for a scheduling algorithm. This however is
not the right granularity for Dynamic Voltage and Frequency Scaling (DVFS),
which usually takes longer time. Therefore UCIFF’s decisions on the frequency
and voltage levels occur more frequently than what a real DVFS system could
follow. As a result, UCIFF’s per-region decisions have to be coarsened by some
mapping from multiple UCIFF decisions to a single DVFS decision.

There are both hardware and software solutions to this. A possible micro-
architectural solution involves pushing UCIFF’s decision into a FIFO queue.
Once the queue is full, a DVFS decision is made based on the average of the
items in the queue, and the queue gets flushed.

A software solution is to perform sampling on the UCIFF configurations at
a rate at most as high as the one supported by the system. Another way is to

10 Vasileios Porpodas and Marcelo Cintra

come up with a single DVFS point for the whole program by calculating the
weighted average of the region points generated by UCIFF. A more accurate
solution could be based on the control-edge probabilities. This knowledge can
be acquired by profiling and can be used to form super-regions which operate at
a single DVFS point.

The mapping decision for the DVFS points is completely decoupled from the
UCIFF algorithm. A thorough evaluation of the possible solutions is not in the
scope of this paper.

4 Experimental Setup

The target architecture is an IA64 (Itanium) [16] based statically scheduled
clustered VLIW architecture. The architecture has 4 clusters and an issue width
of 4 in total (that is 1 per cluster), similar to [2]. Each cluster’s cycle time is 4,
5, 6 or 7 times a reference base cycle. Therefore the ratio of the fastest frequency
to the slowest one is 7:4.

We have implemented UCIFF in the scheduling pass (haifa-sched) of GCC-
4.5.0 [1] cross compiler for IA64.

Our experimental setup has some of its aspects deliberately idealized so that
the generated code quality is isolated from external noise. i. Each cluster has
all possible types of resource units available for all its issue slots. This alleviates
any instruction bundling issues (which exist in the IA64 instruction set). ii. No
noise from register allocation / register spills. Although the scheduler runs twice
(before and after register allocation) our measurements are taken before register
allocation. At this stage the compiler still considers an infinite register file. This
is not far from reality though, as clustered machines have abundant register
resources (each cluster has a whole register file for its own use).

We evaluated UCIFF on 6 of Mediabench II video [8] benchmarks. All
benchmarks were compiled with optimizations enabled (-O flag).

5 Results

We evaluate UCIFF by comparing it against the Decoupled, the Oracle and the
Full-Search algorithms.

The Decoupled scheduler is the state-of-the-art acyclic scheduler for het-
erogeneous clustered VLIW processors (based on the cyclic scheduler of [2]). It
decouples frequency selection from instruction scheduling. The frequency selec-
tion step is done via a simple estimation of the energy consumption and the
execution (schedule) time. The estimation was done as in [2]:

The schedule time is equal to the cycle count of a profiled homogeneous
architecture (cycleshom) multiplied by the arithmetic mean of the clock periods
of the heterogeneous clusters: T ime = cycleshom × (

∑
cl Tcl)/NumOfClusters.

The cycle count of each cluster is easily calculated as: cyclescl = T ime/Tcl.
The energy calculation is similar to that of UCIFF (Table 1) with two main

differences:
1. The dynamic energy of a cluster is equal to a fraction of that of a homoge-

neous cluster, proportional to the ratio of fcl to the average frequency:
Edyn,ins(cl) = Edyn,ins hom(cl) × fcl/[

∑
cl(fcl)/NumOfClusters]

UCIFF 11

2. The energy of the interconnect is equal to that of the homogeneous:
Edyn,icc = Picc × NumICCshomogeneous

The Oracle scheduler is a decoupled scheduler with a perfect frequency se-
lection phase. The frequency configuration selected will always produce the best
schedule with 100% accuracy. This scheduler is the upper bound (optimal) in
code quality (Fig.6) and the lowest bound (optimal) in the scheduler run-time
(Fig.7). It is non-implementable as it requires future knowledge.

A Full-Search UCIFF-based scheduler does not perform any kind of pruning
on the frequency space. It is structured as UCIFF, but instead of a hill climbing
search, it does a full search over the frequency configurations. This makes it the
slowest (Fig.7), but in the meantime it always achieves the optimal code quality,
same as that of the Oracle (Fig.6).

Although in the vanilla Decoupled ([2]) clustering and scheduling are in sep-
arate steps, in all implementations of the above algorithms, scheduling includes
both cluster assignment and instruction scheduling in a unified pass as discussed
in Section 3.2.Core and Alg.2. This lets us focus only on the phase ordering prob-
lem we are interested in: the one between frequency selection and scheduling.

The high-level features of these algorithms are summarized in Table 2.

Decoupled-based UCIFF-based
Decoupled Oracle Full-Search UCIFF

Phase-ordering problem Yes No No No
Code quality Low High High High
Algorithmic complexity Low Low High Medium
Realistic (implementable) Yes No Yes Yes

Table 2. Some features of the algorithms under comparison.

Since UCIFF unifies two otherwise distinct phases (frequency selection and
scheduling), we show some results (Section 5.1) that quantify the first phase
separately. This provides vital insights as to why the unified solution performs
better.

5.1 Accuracy of Frequency Selection

The outcome of the Decoupled algorithm relies heavily on the accuracy of the
frequency selection phase. The stand-alone frequency selection step makes its
decision based on estimations of the energy consumption and the scheduled
code’s schedule length as in [2]. The estimations are based on the energy and
cycle numbers of a homogeneous architecture and on the ratio of the clock cycle
of each cluster of the heterogeneous against that of the homogeneous.

On the other hand UCIFF is not based on estimation, but rather on real par-
tial scheduling results. Its frequency decision is therefore much more informed.

UCIFF’s frequency selection superiority over the Decoupled algorithm is
shown in Fig.5. The horizontal axis shows the error margins in the schedul-
ing outcome when compared to that of the Oracle. For example, a 5% error
margin includes the frequency selections that generate results at most 5% worse
than that of the Oracle. The vertical axis shows the percentage of frequency
selections that have the error margin shown in the horizontal axis. The Decou-
pled accuracy fluctuates significantly for various metrics; In ED2 it is about 5
times less accurate than in EDP. UCIFF, on the other hand, is constantly very
accurate with the fluctuations being less than 10% over all error margins.

12 Vasileios Porpodas and Marcelo Cintra

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%

%
 o

f
e

s
ti
m

a
ti
o

n
s
 w

it
h

in
 m

a
rg

in

Error margin: at most % worse than the Oracle

Accuracy of Frequency Estimation. (DECOUPLED, ED2)

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%

%
 o

f
e

s
ti
m

a
ti
o

n
s
 w

it
h

in
 m

a
rg

in

Error margin: at most % worse than the Oracle

Accuracy of Frequency Estimation. (UCIFF, ED2)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%

%
 o

f
e

s
ti
m

a
ti
o

n
s
 w

it
h

in
 m

a
rg

in

Error margin: at most % worse than the Oracle

Accuracy of Frequency Estimation (DECOUPLED, EDP)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 5% 10% 25% 50%

%
 o

f
e

s
ti
m

a
ti
o

n
s
 w

it
h

in
 m

a
rg

in

Error margin: at most % worse than the Oracle

Accuracy of Frequency Estimation (UCIFF, EDP)

Fig. 5. The Accuracy of the Frequency Selection (Y axis) within the range from the or-
acle (X axis) for Decoupled (Left) and UCIFF (Right). UCIFF is tuned with STEP=8,
STEPVAR=2 and NEIGHBORS=4

 1

 1.01

 1.02

Decoupled UCIFF Oracle/Full-Search

Normalized ENERGY

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

 1

 1.02

 1.04

 1.06

 1.08

Decoupled UCIFF Oracle/Full-Search

Normalized EDP

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

Decoupled UCIFF Oracle/Full-Search

Normalized ED2

 1

 1.02

 1.04

 1.06

 1.08

 1.1

Decoupled UCIFF Oracle/Full-Search

Normalized DELAY

Fig. 6. Code quality (Energy, EDP, ED2, Delay) for Decoupled, UCIFF and
Oracle/Full-Search(FS), over the Mediabench2 benchmarks2 UCIFF is tuned with
STEP=8, STEPVAR=2 and NEIGHBORS=4

UCIFF 13

 0

 50

 100

 150

 200

 250

 300

Full-Search UCIFF Oracle/Decoupled

Normalized Scheduler Run-Time (ENERGY)

cjpeg
djpeg

h263enc
h263dec

mpeg2enc
mpeg2dec

 0

 50

 100

 150

 200

 250

 300

Full-Search UCIFF Oracle/Decoupled

Normalized Scheduler Run-Time (EDP)

 0

 50

 100

 150

 200

 250

 300

Full-Search UCIFF Oracle/Decoupled

Normalized Scheduler Run-Time (ED2)

 0

 50

 100

 150

 200

 250

 300

Full-Search UCIFF Oracle/Decoupled

Normalized Scheduler Run-Time (DELAY)

Fig. 7. The scheduler’s Run-Time in terms of scheduling actions for Energy, EDP, ED2
and Delay, over the Mediabench2 benchmarks2 normalized to the Oracle/Decoupled.
UCIFF is tuned with STEP=8, STEPVAR=2 and NEIGHBORS=4

5.2 UCIFF code quality vs algorithmic complexity

The quality of the code generated by each scheduling algorithm when optimizing
for various metrics (Energy, EDP, ED2 and Delay) is shown in Fig.6.

We provide an estimate of the algorithmic complexity by measuring the ex-
ecution time of each algorithm based on the count of “scheduling actions” each
algorithm performs. By “scheduling action” we refer to the action of schedul-
ing an instruction at a specific point. This is an accurate estimate of the time
complexity since all algorithms share the same scheduling core. The results are
shown in Fig.7.

UCIFF achieves a code quality close to that of the Oracle and the Full-Search,
but with a much lower run-time than the Full-Search (Fig.7). This is because
UCIFF performs a smart pruning of the frequency configuration space.

The ED2 metric is the hardest to predict at the frequency selection step. This
is obvious from the code-quality results of Fig.6. It is there that the estimation
of the Decoupled algorithm proves not accurate enough, being 2.15× worse than
the Oracle in the worst case. UCIFF, on the other hand, is constantly more
accurate than the Decoupled and very close to the Oracle.

UCIFF can be tuned to operate at various points in the trade-off space
of code quality versus scheduling time complexity. It can get closer or even
match Oracle’s performance by searching more frequency configurations. There
are three knobs that we can configure. In decreasing order of importance they are:
NEIGHBORS, STEP and STEPVAR (see Alg.1). The NEIGHBORS variable
controls the number of neighboring configurations in the neighboring set. A
NEIGHBORS value of 4 means that at most 4 neighbors per cluster are in the

2 h263dec energy results are missing due to failure in compilation

14 Vasileios Porpodas and Marcelo Cintra

neighboring set (that is equivalent to NDistance = 2 of Section 3.2). The higher
its value, the more accurate the result but the longer it takes for the scheduler
to run. The STEP controls the cycle distance before evaluating and re-selecting
the neighbors. For very small regions STEP should be as high as the size of
the region, to allow for a full-search over it. A high value of STEP however
makes the algorithm less adaptive to changes. This is the job of STEPVAR. It
decreases STEP by STEPVAR until STEP reaches 1. The results shown were
taken with NEIGHBORS=4, STEP=8, STEPVAR=2. A full investigation of
optimally selecting these variables is beyond the scope of this paper.

6 Related Work

The vast majority of code generation related literature on clustered VLIW pro-
cessors is on homogeneous designs.

Pioneering work on code generation for clustered architectures appeared in
[5], where the Bottom-Up-Greedy (BUG) cluster-assignment algorithm was in-
troduced. The main heuristic used is the completion-cycle, which calculates the
completion cycle of an instruction on each of the possible cluster candidates.

Significant contributions to compilation for clustered VLIW machines were
made in the context of the Multiflow compiler [12]. Clustering is based on Ellis’
work ([5]). The various design points (heuristic tuning, order of visiting the
instructions, etc.) of instruction scheduling, including the cluster assignment,
are discussed in detail in this work.

[4] provides an iterative solution to cluster assignment. Each iteration of the
algorithm measures the schedule length by performing instruction scheduling
and by doing a fast register pressure and communication estimation. This being
an iterative algorithm, it has a long run-time and its use is not practical in
compilers.

The first work that combines cluster assignment and instruction scheduling
was UAS [14]. Unlike BUG ([5]), this is list-scheduling based, not critical-path
based solution. Several clustering heuristics are evaluated with the start-cycle
heuristic (that is the first half of BUG’s completion-cycle heuristic ([5])) shown
to be the best one on an architecture with a 1-cycle inter-cluster delay. This
work considers the inter-cluster bandwidth as a scheduling resource. UCIFF’s
scheduling core extends UAS, as discussed in detail in Section 3.2.

CARS ([9,10]) is a combined scheduling, clustering, and register allocation
code generation framework based on list scheduling. Depth and height heuris-
tics are used to guide the algorithm. UCIFF could be adapted to work in such
a framework for architectures with small register files, where register pressure
becomes a bottleneck.

The RAW clustered architecture ([11]) communicates data across clusters
with send/receive instructions. The scheduler visits instructions in a topological
order and uses the completion time heuristic to guide the process.

A dynamically-scheduled heterogeneous clustered processor was proposed
in [3]. The dual-cluster design has one high-performance and one low-performance
cluster. It does not support DVFS. A DVFS-capable heterogeneous clustered
processor was introduced by [13]. The proposed design though is a dynamically
scheduled one, and as such no contributions are made on the compiler side.

The most closely related work to UCIFF is [2]. It proposes code generation
techniques for a heterogeneous clustered VLIW processor, very similar to ours.

UCIFF 15

It proposes a loop scheduling algorithm based on modulo scheduling. This ap-
proach however, as we have discussed extensively in Section 2.2, suffers from the
phase ordering issue of frequency selection and scheduling which are completely
decoupled from one another. The frequency selection is done by estimating the
energy and the execution time of each frequency configuration based on profiling
data from a homogeneous run.

7 Conclusion

Energy efficiency is becoming a predominant design factor in high performance
microprocessors. Heterogeneous clustered VLIW architectures are a viable choice
under these design goals. This paper proposes a code generation algorithm for
such architectures that performs cluster assignment, instruction scheduling and
per-cluster fast frequency selection in a unified manner. Our evaluation shows
that the proposed algorithm produces code of superior quality than the existing
state-of-the-art and reaches the quality of a scheduler with an oracle frequency
selector. This is achieved with a modest increase in algorithmic complexity.

References

1. Gcc: Gnu compiler collection. http://gcc.gnu.org.
2. A. Aleta, J. Codina, A. González, and D. Kaeli. Heterogeneous clustered vliw

microarchitectures. In CGO, pages 354–366, 2007.
3. A. Baniasadi and A. Moshovos. Asymmetric-frequency clustering: a power-aware

back-end for high-performance processors. In ISLPED, pages 255–258, 2002.
4. G. Desoli. Instruction assignment for clustered vliw dsp compilers: A new approach.

HP laboratories technical report HPL, 1998.
5. J. Ellis. Bulldog: A compiler for vliw architectures. Technical report, Yale Univ.,

New Haven, CT (USA), 1985.
6. P. Faraboschi, G. Brown, et al. Lx: a technology platform for customizable vliw

embedded processing. In ISCA, pages 203–213, 2000.
7. J. Fridman and Z. Greenfield. The tigersharc dsp architecture. Micro, IEEE,

20(1):66–76, 2000.
8. J. Fritts, F. Steiling, et al. Mediabench ii video: expediting the next generation of

video systems research. In Proceedings of SPIE, volume 5683, page 79, 2005.
9. K. Kailas, K. Ebcioglu, and A. Agrawala. Cars: a new code generation framework

for clustered ilp processors. Technical Report UMIACS-TR-2000-55, 2000.
10. K. Kailas, K. Ebcioglu, and A. Agrawala. Cars: a new code generation framework

for clustered ilp processors. In HPCA, pages 133 –143, 2001.
11. W. Lee, R. Barua, et al. Space-time scheduling of instruction-level parallelism on

a raw machine. In ASPLOS, 1998.
12. P. G. Lowney, S. M. Freudenberger, et al. The multiflow trace scheduling compiler.

Journal of Supercomputing, 7:51–142, 1993.
13. N. Muralimanohar et al. Power efficient resource scaling in partitioned architec-

tures through dynamic heterogeneity. In ISPASS, pages 100–111, 2006.
14. E. Ozer et al. Unified assign and schedule: a new approach to scheduling for

clustered register file microarchitectures. pages 308 –315, 1998.
15. G. Pechanek and S. Vassiliadis. The ManArray embedded processor architecture.

In Euromicro, volume 1, pages 348–355, 2000.
16. H. Sharangpani and H. Arora. Itanium processor microarchitecture. Micro, IEEE,

20(5):24–43, 2000.
17. A. Terechko and H. Corporaal. Inter-cluster communication in vliw architectures.

ACM Transactions on Architecture and Code Optimization (TACO), 4(2):11, 2007.

	UCIFF: Unified Cluster assignment Instruction scheduling and Fast Frequency selection for heterogeneous clustered VLIW cores

