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Abstract—SIMD vectors help improve the performance of
certain applications. The code gets vectorized into SIMD
form either by hand, or automatically with auto-vectorizing
compilers. The Superword-Level Parallelism (SLP) vectoriza-
tion algorithm is a widely used algorithm for vectorizing
straight-line code and is part of most industrial compilers.
The algorithm attempts to pack scalar instructions into vectors
starting from specific seed instructions in a bottom-up way.
This approach, however, suffers from two main problems: (i)
the algorithm may not reach instructions that could have been
vectorized, and (ii) atomically operating on individual SLP
graphs suffers from cost overestimation when consecutive SLP
graphs share data. Both issues lead to missed vectorization
opportunities even in simple code.

In this work we propose SuperGraph-SLP (SG-SLP), an
improved vectorization algorithm that overcomes these limita-
tions of the existing algorithm. SG-SLP operates on a larger
region, called the SuperGraph. This allows it to reach and
successfully vectorize code that was previously unreachable.
Moreover, the new region helps eliminate the inaccuracies
in the cost-calculation as it allows for a more holistic view
of the code. Our experiments show that SG-SLP improves
the vectorization coverage and outperforms the state-of-the-
art SLP across a number kernels by 36% on average, without
affecting the compilation time.
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I. INTRODUCTION

All modern high-performance general purpose processors

support short SIMD (Single Instruction Multiple Data) vec-

tor instructions in their instruction sets. It allows them to

boost performance in applications with vector computations,

(usually scientific or signal-processing workloads). These

vector instructions perform the same operation as multiple

scalar instructions in fewer cycles while using less energy.

Vector ISAs are being improved regularly, supporting wider

data types (e.g., 512 bits in Intel’s AVX-512) and a larger

variety of opcode types.

Making use of the SIMD units, however, is not a triv-

ial task. Software developers must explicitly express the

vector parallelism in their code, taking into consideration

the capabilities of the target platform. This is not ideal for

several reasons: (i) The code may not be portable to other

target architectures if compiler intrinsics are used. (ii) Even

if the code is portable, its performance may not be. (iii) It

is harder to program, more error prone and time consuming.

Alternatively the developers can rely on an auto-vectorizing

compiler to convert the regular scalar code into vector code.

This is the preferred method for most software projects,

except perhaps for highly tuned kernels in high performance

libraries.

SLP [32] is the state-of-the-art straight-line code auto-

vectorizing algorithm and has been implemented in several

compilers, including GCC [10] and LLVM [18]. This al-

gorithm is based on concepts from the original Super-word

Level Parallelism paper [17]. It works by first scanning the

code for scalars that can become the seeds of vectorization

(usually consecutive stores). Once found they are grouped

together to form the first potentially vectorizable group.

Then, SLP walks up the data-flow (towards the definitions),

attempting to group the predecessors together, as long as

they can be potentially vectorized. After collecting all these

groups of instructions (of the same opcode), SLP checks

whether converting the grouped scalar instructions into vec-

tors is better for performance than keeping them scalar. The

cost calculation factors in the costs of gathering/scattering

data into/out of the vector registers.

SLP has been designed with computational complexity

in mind. The major design decision that contributes to the

fast run-time of this algorithm and thus its wide adoption by

industrial compilers is the concept of seed instructions. Even

though any potential group of scalars could be vectorized,

the widely adopted SLP algorithm will only consider groups

that are rooted at specific seeds (usually consecutive stores

and reductions). The SLP algorithm will then only ex-

plore instructions that are data-flow connected to the seeds.

Exploring all potential vectorizable sets of scalars in the

code is computationally unaffordable. Although this design

limits the vectorization coverage, it reduces the complexity,

allowing the algorithm to be used in production compilers.

Compiler developers consider that the compile-time com-

plexity of industrial compilers is of utmost importance. This

is true to such an extent that for example in LLVM’s [18]

implementation of SLP there are potential groups of seed

instructions that have been deliberately left out and are not

even explored (32 x int8 for AVX2). This is done in an

attempt to limit the computational complexity, even though

this limits the vectorization coverage.

In this work we identify a major limitation of the SLP

algorithm in the way it forms and explores the SLP graph

starting from the given seeds. The state-of-the-art SLP

algorithms will only build the SLP graph in a bottom-up way

(from the uses to the definitions) and operate on it atomically
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Figure 1. SG-SLP overcomes SLP limitations.

without considering its future neighboring (and potentially

vectorizable) graphs. In this process, it: (i) conservatively

considers the side-uses (side-exits from the SLP graph) as

external uses of scalar code, and (ii) does not attempt to

explore vectorization on any other path beyond the basic

bottom-up region. This strategy leads to two significant

problems (illustrated in Figure 1):

1) There may well be instructions that could be po-

tentially vectorized but remain unreachable if there

is no descending data-flow path from them to some

seed. In Figure 1(a) the groups from U1 to U5 are

unreachable by SLP. Allowing seeds to form at more

instructions could fix this issue, but it has prohibitively

high complexity.

2) The additional cost introduced by the side-uses could

potentially render the code non-profitable for vector-

ization, even though in reality it may be perfectly

vectorizable if considered together with the neighboring

graphs. There is no easy fix for this, as the algorithm

cannot foresee the future in order to tell whether the

side-uses will be vectorized or not. In Figure 1(b) if

the cost of side-entrances and exits is high enough, SLP

will fail to vectorize both Region1 and Region2.

We explain both of these problems in more detail and

provide insightful examples in Section III.

SuperGraph-SLP (SG-SLP) solves both problems. It is

a novel SLP-based automatic vectorization algorithm that

operates on a larger region compared to SLP (referred to

as the SuperGraph). The SG-SLP supergraph region is not

only a superset of several neighboring SLP graphs, but it

also extends to instructions unreachable by SLP. Initially

the supergraph forms bottom-up, but it will also attempt to

extend downwards from successfully grouped instructions.

The supergraph enables us to vectorize parts of the code that

were either: (i) unreachable by vanilla SLP due to its limited

region (see Section III-B), or (ii) non-vectorizable due to the

over-estimation of the SLP cost (see region fragmentation

Section III-C). SG-SLP results in improved vectorization

coverage and better performance, with little impact on the

execution time of the algorithm, which renders it suitable

for use in industrial compilers.

II. BACKGROUND

SG-SLP builds upon the state-of-the-art SLP automatic

vectorization algorithm. In this section we briefly present

the state-of-the-art of automatic vectorization in modern

compilers with the main focus on the operation of SLP.

A. Automatic Vectorization Algorithms

Modern compilers have two distinct types of automatic

vectorization algorithms:

1) Loop-based algorithms (e.g., [23], [24]). These require

that: (i) the loop has well defined induction variables,

usually affine (ii) all inter- and intra-loop dependencies

are statically analyzable (or dynamically evaluated for

multi-versioning). Consecutive loop iterations are fused

together into a single vectorized iteration in a strip-

mining fashion.

2) Straight-line code algorithms, the most widely used

being Superword-Level Parallelism (SLP, e.g., [17],

[32]). Their main features are that: (i) they operate on

straight-line code, not loops (ii) they can even vectorize

code within non-vectorizeable loops

Straight-line code algorithms scan the code for repeated

sequences of isomorphic scalar instructions. Instructions of

the same type are grouped together and replaced by a single

vector instruction. The name Super-Word Level Parallelism

(SLP) refers to vector parallelism for short vector ISAs (e.g.,

Intel’s AVX2). This is to differentiate it from traditional

vector processing on machines of the past (with vector

widths in the tens or hundreds [27], [33]).

Although the SLP algorithm could be considered as a

superset algorithm of broader scope compared to the loop-

based vectorizer [17], in practice this is not the case. The

algorithms are complementary and industrial strength com-

pilers (e.g., GCC and LLVM) implement both algorithms.

A common configuration is to run the SLP pass after the

loop-vectorization pass.

B. SLP Vectorization

The most widely used straight-line code vectorizer is

the Superword-Level Parallelism algorithm (SLP) [32]. It
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Figure 2. Overview of the SLP algorithm. The highlighted sections belong
to the SG-SLP algorithm.

scans the compiler’s intermediate representation, identifying

specific type of instructions, referred to as seeds. The seeds

are instructions of a small subset of the instruction set,

usually stores or instructions that form reduction trees. The

seeds become the first potential vector group and are the

starting point of the algorithm. The algorithm then searches

through the code above the seeds, following the data-flow,

to form the rest of the vectorizable groups.

The main difference of SLP from traditional vectorization

techniques is that SLP does not operate on loops, making

it more generally applicable than loop-based vectorizers,

e.g., on loop-unrolled code or within basic-blocks of the

non-vectorizable loops. The code to be vectorized can span

multiple basic blocks, as long as each group of instructions

to be vectorized belongs to the same basic block.

A high-level overview of the SLP algorithm is shown in

Figure 2 (the highlighted parts have been added by SG-

SLP). The SLP algorithm first scans for vectorizable seed

instructions (step 1), which are instructions of the same type

and bit width that are either: (i) non-dependent memory

instructions that access adjacent memory locations (scalar

evolution analysis [7], [4], [37] is commonly used to test

for this); (ii) instructions that form a reduction tree (e.g., a

reduction tree of additions). Adjacent memory instructions

are the most promising seeds and therefore most compilers

look for these first [32].

The algorithm then grabs a seed from the seed list (step 2)

and starts to build the SLP graph (step 3). Building the SLP

graph involves forming groups of potentially vectorizable

instructions by following the data dependence graph that

starts at the seed instructions. The state-of-the-art method for

generating the graph is to start from store seed instructions

and build the graph from the bottom-up. This is the approach

followed in both GCC’s and LLVM’s SLP vectorizers [32].

Each group contains the scalar instructions that are candi-

dates for vectorization, but it also carries some additional

data such as the group’s cost (see next step). Once the

algorithm encounters scalar instructions that cannot form a

vectorizable group it forms a final non-vectorizable group

which will carry the cost of collecting the data from scalars

and inserting them into the vector. At this point the algorithm

stops exploring the code in this direction as this path cannot

be vectorized any further.

Once the graph has been constructed, SLP estimates the

code’s performance (step 4). This is done with the help

of the compiler’s target-specific cost model. The group’s

cost is equal to the savings from converting each group of

scalar instructions into vector form (negative numbers mean

better performance). The cost of the whole graph is equal

the sum of the group costs (the lower the cost the better).

The graph cost is compared against a threshold (usually 0)

to determine whether vectorization should proceed (step 7).

If so, the compiler modifies the intermediate representation

code by replacing the groups of scalar instructions with their

equivalent vector instructions (step 8), and emits any insert

or extract instructions required for the flow of data between

the vector and scalar instruction (step 9). If, however, the

cost of vectorization is higher than that of the scalar code,

then the code remains unmodified. This process repeats for

all the seed instructions that the SLP front-end has collected

(step 11).

III. MOTIVATION

This section motivates SG-SLP with the help of three

examples that highlight the weaknesses of the existing SLP

algorithm, while demonstrating how SG-SLP overcomes

them. We show that the fragmented region of the original

SLP algorithm is causing vectorization opportunities to be

missed. SG-SLP introduces a larger vectorization region

(the supergraph) which allows the algorithm to successfully

vectorize the code.

A. SLP Builds and Vectorizes Standalone Regions

SLP is a bottom-up algorithm since the SLP graph grows

from the seeds upwards following the instruction data flow

predecessors. The front-end of SLP scans the code for the

appropriate seeds and, groups them together. Then the core

of the algorithm (Figure 2 steps 3 to 10) builds a graph

rooted at each seed group. In other words, SLP will build a

standalone SLP graph for each group of seeds. For example

consider the code of Figure 3(a), with the corresponding

data-flow graph of Figure 3(b). A single run of the core of

the algorithm will build the SLP graph of Figure 3(c) for



A[i+0] = tmp1;
A[i+1] = tmp2;

tmp1 = B[i+0] + D[i+0];
tmp2 = B[i+1] + D[i+1];

long tmp1, tmp2, A[], B[], C[], D[], E[];

= (tmp1 + E[i+0]) << 1;
= (tmp2 + E[i+1]) << 2;
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Figure 3. Example 1: SLP successfully vectorizes both SLP graphs.

the A[i+0] and A[i+1] seeds, and another run will build

the graph in Figure 3(d). This is a fragmented view of

the vectorized region. Nevertheless, it usually succeeds, as

shown in the example of Figure 3 and as discussed below.

Each SLP graph grows upwards forming potential vector

groups (represented by rectangular boxes in Figure 3), until

it encounters either loads, or instructions that cannot form

a vectorizable group (e.g., instructions of different opcodes,

instructions that have no vectorizable form in the target ISA,

or memory non-consecutive loads).

Each potentially vectorizable group has a cost value asso-

ciated with it (shown on the side of the instruction groups) of

Figure 3). This cost represents the added cost of vectorizing

the instruction in the group compared to the cost if they

remained scalar. A negative cost means that vectorization is

profitable. For example, vectorizing the stores to A[i+0] and

A[i+1] in Figure 3(c) has a cost of -1, which means that

the vectorized stores have a lower cost than the two scalar

stores.

The SLP graph is treated as a single atomic vectorization

entity. All instructions within the graph are to be vectorized,

while flow of data into or out of the graph is considered

external input or output. Edges to/from code outside the SLP

graph: (i) are specifically tagged and (ii) introduce additional

cost because of the additional instructions required to trans-

fer the data between scalars and vectors. For example, the

SLP graph of Figure 3(c) has two external uses: the additions

that lead to the stores to C[i+0] and C[i+1], each of which

requires an extract instruction which introduces a cost of +1

each.

The decision on whether or not to vectorize the code of

the SLP graph is made atomically for that graph alone, by

calculating the cost of the whole SLP graph and comparing it

to a threshold value, (usually 0). Only graphs with a negative

total cost are to be vectorized. In the example of Figure 3(c),

the SLP graph has a cost of -2, and therefore vectorization

is profitable. Once the graph is considered vectorizable,

its scalar instructions in the intermediate representation are

replaced with their vectorized counterparts.

After the graph of Figure 3(c) is vectorized and its in-

termediate representation code of the corresponding scalars

has been converted into vectors, SLP moves to the next

seeds (as shown in steps 11 and 2 of Figure 2) and builds

a graph starting from the new seeds. It therefore builds the

graph rooted in C[i+0] and C[i+1], as shown in Figure 3(d).

The graph includes the store seeds (C[i+0], C[i+1]), the left

shifts (≪), the additions, the loads from E[i+0],E[i+1], the

extract instructions (X) and finally the vector addition of

the previously vectorized graph (the top left vectorized node

corresponds to the group of additions of Figure 3(c)). The

total cost is -5, as all instructions, including the group of

extracts are vectorizable 1 . The end result is that even though

SLP formed two distinct graphs for the seeds and attempted

to vectorize them in isolation, the whole code of Example 1

gets fully vectorized.

To summarize, in Example 1 (Figure 3), the SLP al-

gorithm generates two graphs, one rooted at the stores to

A[i+0] and A[i+1], and a second one rooted at the stores

to C[i+0] and C[i+1]. Even though there is data flowing

across the graphs (through the data-flow edges as shown in

Figure 3(b)), the SLP vectorizer will attempt to vectorize

them in isolation, one at a time. Each time, SLP is treating

the shared edges as an external data transfer with additional

cost. Despite this, in this particular example the cost for

each individual graph turns out to be profitable and the SLP

algorithm successfully vectorizes the code as a whole.

B. SLP Limitation 1 of 2: Unreachable instructions

In Example 1 (Figure 3), SLP was lucky enough that

instructions like the loads from E[i+0] and E[i+1] (see

Figure 3(b)) were reachable by the second seed group

(C[i+0],C[i+1]). This may not always be the case. Consider

the scenario of Example 2, where the stores are not consec-

utive (say C[i+x] and C[i+y] of Figures 4(a) and 4(b)). In

this case the non-consecutive stores to C[ ] do not qualify

1These extracts are redundant and will be optimized away once the code
gets vectorized.



A[i+0] = tmp1;
A[i+1] = tmp2;

tmp1 = B[i+0] + D[i+0];
tmp2 = B[i+1] + D[i+1];

long tmp1, tmp2, A[], B[], C[], D[], E[];

= (tmp1 + E[i+0]) << 1;
= (tmp2 + E[i+1]) << 2;
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C[i+y]

(a) Code. Notice the non-consecutive stores
to C[ ]. They cannot form a seed group.

B[i+0] B[i+1]

LL

LL+ +

+ +

<< <<

S

D[i+0] D[i+1]

LL

S S

A[i+0] A[i+1] 21

E[i+0] E[i+1]

S

C[i+x] C[i+y]

(b) Data Flow Graph

L L

B[i+0] B[i+1]

S S

−1+ +

L L

Total Cost: −2

No SLP Graph

for

+1+1

−1

A[i+0] A[i+1]

−1

+ +

−1

D[i+1]D[i+0]

C[i+x],C[i+y]

(c) SLP graph for seeds A[i+0],A[i+1]

S S

+ +−1

L L

B[i+1]

−1

B[i+0]

L L −1

D[i+1]D[i+0]

L L

<< <<

Total Cost: −5

S S+1 +1

−1

A[i+0] A[i+1]

−1

E[i+0] E[i+1]

+ + −1

−1

C[i+x] C[i+y]

(d) SG-SLP graph for seeds A[i+0],A[i+1]. It includes
all the isomorphic instruction groups reachable from
the seeds.

Figure 4. Example 2: SLP only vectorizes the graph rooted at
A[i+0],A[i+1] and completely misses the rest of the code. On the other
hand, SG-SLP fully vectorizes the code.

as seeds and therefore they are not grouped together. As a

result, SLP will only build a single graph, that of Figure 4(c),

rooted at A[i+0],A[i+1]. The code beyond this graph is

unreachable to SLP and is not considered for vectorization

(the unreachable nodes includes both loads from E[ ], the

additions and the shifts). SLP will simply vectorize the nodes

of Figure 4(c) and the rest of the code will remain scalar.

This leads to a vectorization cost of -2.

SG-SLP, on the other hand, builds a larger region. The

SG-SLP supergraph grows across all paths towards both

definitions and uses. The region extends to any isomorphic

candidate instruction groups that could be potentially vec-

torized along those paths. The SG-SLP region for the seeds

A[i+0] = tmp1;
A[i+1] = tmp2;

long tmp1, tmp2, A[], B[], C[];

C[i+0] = tmp1;
C[i+1] = tmp2;

tmp1 = B[i+0];
tmp2 = B[i+1];
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(d) SG-SLP graph for seeds A[i+0],A[i+1]. It includes all
nodes reachable from the seeds all the way to C[i+0],C[i+1]

Figure 5. Example 3: SLP fails to vectorize the two graphs due to region
fragmentation. SG-SLP succeeds.

A[i+0],A[i+1] is shown in Figure 4(d). It includes all the

nodes that are present in the vanilla SLP graph, but it extends

all the way to the non-vectorizable nodes C[i+x] and C[i+y].

In this graph all the groups in the rectangles are vectorizable,

leading to a total cost of -5, a much better cost compared

to original SLP cost of -2.

C. SLP Limitation 2 of 2: Region Fragmentation

As described in Section III-A, SLP may succeed in

vectorizing standalone graphs, even though they may share

edges with subsequent graphs. The problem arises when

neighboring SLP graphs are connected to each other via

multiple data-flow edges, or to be more precise, when the

ratio of these edges to the total nodes is high enough. Let’s

consider another example which demonstrates the limitation

of attempting to vectorize the graphs in isolation under such

conditions.

The code of Example 3 (Figure 5(a)) corresponds to the

data flow graph of Figure 5(b). Just like in Example 1,

there are two groups of seeds: stores to A[i+0],A[i+1] and

stores to C[i+0],C[i+1]. As explained in Section III-A, the

existing SLP algorithm will generate separate graphs for

each seed group and will attempt to vectorize each one of

them individually. Once again, this will introduce additional

extract/insert instructions at each graph’s boundaries. For



example, in Figure 5(c), the left graph has two external uses

(the stores to C[i+0],C[i+1]) which requires two individual

extract instructions. The total cost of the graph is now equal

to 0, which means that the graph on the left will remain

scalar. Similarly, SLP will also fail to vectorize the graph

on the right hand side, as its total cost is also 0.

The reason why SLP fails to vectorize the otherwise

perfectly vectorizable code, is that SLP forms multiple

graphs, one for each individual seed group. This leads

to an overestimation of the extraction/insertion costs and

therefore an inaccurate calculation of the total cost. Once

the communication edges between individual SLP graphs

becomes large enough compared to the number of nodes

in the graph, the accuracy of the cost calculation drops to

such an extent that SLP fails to vectorize each individual

graph even though all of the graphs could have been fully

vectorized.

SG-SLP overcomes this limitation. It builds a larger

region that expands to all directions, including the nodes

of the neighboring standalone SLP graphs. Just like SLP, it

is rooted in the same seeds, and it starts by growing bottom-

up. Unlike SLP though, SG-SLP will attempt to grow the

region towards both the definitions and uses as long as

they can form a vectorizable group. Therefore once SG-SLP

reaches the top of the graph (e.g., the loads B[i+0],B[i+1]

in Figure 5(b)), it will scan the uses and attempt to grow

the region towards them (that is the stores to C[i+0],C[i+1]).

SG-SLP generates a single graph originating from the seeds

A[i+0],A[i+1] that spans all the nodes in the data-flow

graph all the way to the succeeding seeds C[i+0],C[i+1]

(Figure 5(d)).

The cost evaluation of this SG-SLP super-graph is done in

a similar logic as SLP. As shown in Figure 5(d), all groups

are vectorizable with a total cost of -3.

IV. SUPERGRAPH-SLP

This section describes the details of the SG-SLP algorithm

as implemented on an SSA-based IR. At a high-level view

the new SG-SLP specific parts are shown in Figure 2 (the

highlighted parts).

A. SG-SLP SuperGraph Construction

At the core of the SG-SLP algorithm lies the construction

of the supergraph. This extends the vanilla SLP graph

creation in step 3 of Figure 2. In short, the algorithm extends

the graph creation to form larger regions that can include

instructions that would otherwise be unreachable, and may

even span multiple seeds. A summarized (and significantly

simplified) version of the algorithm is listed in Algorithm 1.

The buildSG() function (line 6) triggers the creation of

the graph for the given group of seed instructions by calling

the recursive function buildSGrec() (line 11). Initially the

inputs of buildSGrec() are the seeds (the root of the graph).

If the candidate group instructions can be vectorized, the

candidates are appended to the graph (lines 12 to 14). In

vanilla SLP this function builds the graph recursively by

performing a bottom-up depth-first traversal of the use-

def chains, in a direction from the uses to the definitions

(lines 22 to 23). The data-flow predecessors become the new

candidates for vectorization and are passed as operands to

the buildSGrec() function (line 23). In SG-SLP, the graph

extends towards both the definitions and the uses. To avoid

increased complexity, the algorithm will only consider a

small number of users (in line 26). Then the algorithm goes

through the users in the candidate groups formed with the

subset of users and recursively calls buildSGrec using the

users as the new candidates (lines 27 to 28). The generation

of defGroups and useGroups of candidates (lines 21 and 26)

is described in Section IV-B.

Of course, not all candidates end up being vectorized (line

12). The candidates for a vector group need to be:

1) Scalar (not already vectorized)

2) Isomorphic (same opcode)

3) Instructions (not constants)

4) Unique instructions (not multiple instances of the same

instruction)

5) In the same control paths (all instructions in the same

BB)

6) Able to be scheduled (not breaking dependences)

7) Not in the SLP graph already

If the group fails any of the conditions in the list of

restrictions, then the group is rendered inappropriate for

vectorization. In that case a special terminator group (tagged

as non-vectorizable) is added to the graph and the recursion

stops (lines 15 to 18). Otherwise the group is generated

and appended to the graph (line 14). These restrictions not

only prevent the algorithm from attempting to vectorize bad

instructions, but it also prevents builsSGrec() from getting

stuck in an infinite loop visiting the same nodes over and

over again.

As a final step, SG-SLP needs to remove any vectorized

seeds from all the list of non-visited seeds collected by

the front-end of the algorithm (Figure 2 step 10). This is

only a requirement for SG-SLP as unlike vanilla SLP it

can vectorize in all directions, potentially vectorizing seed

instructions that have not been considered for vectorization

yet. These are removed to prevent the algorithm from

attempting to vectorize them again.

B. Pruning Candidate Groups

While growing the SLP graph in a bottom-up manner,

we need to generate the best possible groups out of the

predecessor instructions (Algorithm 1 line 21) such that

vectorization can apply to that group too. Generating these

vectorization groups in SLP can be challenging.

In the trivial case, the instructions in the current group

have a single predecessor, therefore the candidate group

contains only the immediate predecessors in the same order.



Algorithm 1. Building the SG-SLP supergraph.
1 /******* Building SG-SLP SuperGraph *******/

2 /* Input : Group of seed instructions */

3 /* Output: SG-SLP supergraph */

4
5 // The driver function for building the graph

6 buildSG(seeds) {

7 buildSGrec(seeds);

8 }

9
10 // Recursively build the graph

11 buildSGrec(candidateGroup) {

12 if (candidateGroup is legal to vectorize)

13 // Safe to vectorize, create vectorizable group

14 addGroupToGraph(candidateGroup, VEC)

15 else

16 // Mark the new group as non-vectorizable

17 addGroupToGraph(candidateGroup, NOVEC)

18 return

19
20 // SLP Recursion: defs

21 defGroups = get pruned definition candidate group

22 for each defGroup in defGroups

23 buildSGrec(defGroup)

24 // SG-SLP only recursion: uses

25 if (SG-SLP is enabled)

26 useGroups = get pruned user candidate groups

27 for each useGroup in useGroups

28 buildSGrec(useGroup)

29 }
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Figure 6. Efficient generation of def/use candidate groups in SLP and
SG-SLP.

This is shown in Figure 6(a) top, where each of the two

stores has a single definition (A and X respectively). The

only possible group of the definition instruction is [A, X]

and this is the one being formed by SLP.

When the current group contains commutative instructions

with two operands, then we have 2
V L−1 possible definition

groups to choose from (VL is the Vector Length). In practice

though, LLVM’s SLP will only form one of all these groups:

The definition instructions per lane are sorted based on

opcode and the groups are created using this ordering. This

is shown in Figure 6(a) bottom: Instructions A(*), B(+) of

lane 1 and X(+), Y(*) of lane 2 are sorted based on their

opcode, leading to B(+), A(*) and X(+), Y(*). Then the

groups generated are [B(+), X(+)] for lane 1 and [A(*), Y(*)]

for lane 2.

SG-SLP has the additional task of generating groups out

of the successors. Since the number of successors can be

an arbitrary number N, the number of candidate groups is

N
V L−1. SG-SLP performs a similar pruning for the succes-

sors as the one performed for the predecessors. It sorts the

users based on their opcode and forms the candidate groups

in a single attempt (Algorithm 1 line 26). This is shown in

Figure 6(b). The instructions using the data produced by the

two additions of the current group are of various opcodes (A

is add, B is multiply etc.). The instructions are sorted based

on their opcode, which gives us the following orderings :

A(+), D(+), B(*), C(-) for lane 1 and Y(+), Z(+), W(*),

X(-) for lane 2. Obviously, this technique will not always

generate optimal groups, but exploring its effectiveness is

beyond the scope of this paper.

C. SG-SLP Specific Details

Although the SG-SLP algorithm shares a lot of SLP’s

infrastructure, it has to address some unique challenges,

for its correct operation. This section highlights the most

important of these issues.

Vanilla SLP only considers gathering from scalars into

vectors, since the SLP graph is built bottom-up and the leaf

group nodes in the graph can only define values used by

other nodes in the graph. In SG-SLP, however, the border

group nodes of the graph can also be using values defined

by other vectorized nodes within the graph. This requires

step 4 of Figure 2 to be able to estimate the cost of such

scatter instructions and step 9 to be able to generate scatter

code.

Secondly, unlike vanilla SLP, SG-SLP needs to be able to

swizzle the vector data to match the sequence expected by

the store seed nodes whose order is specified by the memory

addresses. This can happen in case the SG-SLP graph spans

across multiple seeds. This is never an issue with the original

SLP as stores are only present at the root of the SLP graph.

This type of swizzling is to be considered in all steps 3, 4

and 9 of Figure 2.

Thirdly, SG-SLP needs to be able to revert to vanilla

SLP if that proves more profitable (steps 4, 5 and 6

of Figure 2). Although this is not frequent, there is no

guarantee that larger graphs will always improve the cost

[29]. For example, it might happen that as the SG-SLP

graph extends further than SLP, that particular section of



the code may introduce many additional overheads due to

extensive insert/extract instructions, leading to worse overall

performance. To avoid this situation, the SG-SLP algorithm

marks the nodes that correspond to the limits of the SLP

graph while it is building the supergraph. This allows it to

calculate both SLP and SG-SLP costs without having to use

a second graph specifically for SLP.

Finally, the step of converting the scalar instructions into

vectors (step 8 of Figure 2) needs some SG-SLP specific

adjustments. Just like in SLP, the nodes of SG-SLP are

getting converted into vectors in a top-down fashion, with

the definitions being vectorized before the uses. This allows

for a simple conversion of the code in a single pass (post-

order traversal). In LLVM this is done with a recursive

function that first calls itself recursively for the predecessor

groups and then converts the current group into vector form.

However, SG-SLP needs to visit the uses as well. Therefore

the recursive function needs to first calls itself recursively

for all the predecessors groups, then to vectorize the current

group and finally to call itself recursively again for all the

successor groups.

D. Complexity Considerations

There are two common sources of complexity for the

SLP and SG-SLP algorithm: 1. collecting the vectorization

seeds and 2. attempting to vectorize the code that is rooted

at the seeds. The first problem is the dominant source of

complexity and therefore requires several simplifications to

render the problem solvable in acceptable time (such as

looking for specific instruction types to be used as seeds

rather than any possible instruction type). The SLP algorithm

solves the second problem quite fast: The SLP graph grows

greedily bottom-up until it encounters instructions that do

not meet the vectorization conditions. Even though in the

worst case each SLP graph could contain all instructions of

the program, in practice this is extremely rare and the SLP

graph size does not grow large. To avoid this corner case,

the LLVM implementation has a hard-coded size limit for

the SLP graph size.

SG-SLP makes the second problem slightly more complex

as it allows for the graph to grow in all directions. The worst

case is equivalent to the worst case of vanilla SLP, that is

a graph containing all the instructions of the program. In

practice though, the same factors that limit the complexity of

vanilla SLP apply to SG-SLP too. Encountering instructions

that can be potentially vectorized is quite rare, thus prac-

tically limiting the complexity of the algorithm to similar

levels to SLP.

Finally, SG-SLP introduces a third source of complexity:

visiting a node’s users. While the bottom-up exploration is

bounded by the single producer (at least in SSA), SG-SLP

will also explore the successors which could potentially be

as many as the number of nodes in the program in the worst

case. To limit the complexity, SG-SLP limits its exploration

Kernel Benchmark Filename:Line Description

motivation1 Section III Figure 3(a) SLP succeeds

motivation2 Section III Figure 4(a) SLP succeeds partially

motivation3 Section III Figure 5(a) SLP fails

dc coeff 464.h264 block.c:605 Pick out DC coefficients

vertical 464.h264 block.c:2054 DCT luma SP vert transform

horizontal 464.h264 block.c:914 Horizontal transform

inverse dc 464.h264 block.c:687 Inverse DC transform

sub four vecs 433.milc sub4vecs.c:26 Subtract su3 vectors

lattice basis 444.namd Lattice.h:275 Calc reciprocal lattice vectors

translation 453.povray matrices.cpp:788 Compute translation transform

Table I
BRIEF DESCRIPTION OF KERNELS USED IN EVALUATION.
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Figure 7. Execution time (normalized to O3).

to a small number of successors (Algorithm 1 line 26). We

empirically found that a limit of 4 users is usually adequate.

Section V-E discusses the complexity considerations fur-

ther and provides data to support our claim that the com-

plexity remains low.

V. RESULTS

A. Experimental Setup

We implemented SG-SLP in LLVM 3.8.1. The tests were

compiled with one of the three configurations: The first one

is O3, which corresponds to -O3 -unroll-allow-partial and

the SLP vectorizer disabled, then there is SLP which is

O3 but with the SLP vectorizer enabled, and finally SG-

SLP which is O3 but with the SG-SLP algorithm enabled

instead. All configurations were compiled with these ad-

ditional options: -march=skylake -mtune=skylake -mavx2,

and with the loop vectorizer disabled. The target platform

is a desktop system running Linux-4.4.0 on an Intel Core

i5-6600K 3.5GHz Skylake CPU, 16GB RAM. We evaluated

our approach on kernels extracted from SPEC CPU2006 [36]

as shown in (Table I). and included the motivating examples

of Section III in these tests for completeness. For all perfor-

mance results we executed the test 11 times, after skipping

one initial run.

B. Performance

The first three tests are the motivating examples of Fig-

ures 3, 4 and 5. They show that the performance of these



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

motivation1

motivation2

motivation3

dc-coeff
horizontal

vertical
inverse-dc

sub-four-vecs

lattice-basis

translation

avg

B
re

a
k
d
o
w

n
 o

f 
S

G
-S

L
P

 T
e
c
h
n
iq

u
e
s

 

SLP-sufficient Unreachable-by-SLP SLP-cost-too-high

Figure 8. Breakdown of the individual techniques that enable SG-SLP.

tests is what we expected: In motivation1, SLP is adequate

(SG-SLP cannot do any better), in motivation2 SLP suc-

ceeds but SG-SLP can do better, and finally in motivation3

SLP fails to vectorize and SG-SLP succeeds. The rest of

the results show that SG-SLP consistently improves upon

SLP except for sub-four-vecs which shows no performance

difference.

Figure 8 provides more insights into the individual fac-

tors that contribute to the success of SG-SLP. It shows

the breakdown of the individual techniques responsible for

the successful vectorization of instructions by SG-SLP: (i)

for some of the instructions SLP is sufficient, (ii) some

instructions are completely unreachable by SLP due to its

restricted region formation (as described in Section III-B),

and finally (iii) some of the instructions are reachable by

SLP but are not vectorized due to the over-estimation of the

vectorization cost, caused by the region fragmentation (see

Section III-C).

Finally, in some cases vectorization proves harmful for

performance. There are two such cases: 1) horizontal where

SLP performs about 75% worse than O3, but performs

significantly better with SG-SLP (45% faster than O3), and

2) lattice-basis where both SLP is about 65% slower than

O3 and SG-SLP performs similarly to O3. Such slowdowns

are not uncommon 2 . They are usually caused by one or

more of the following: (i) poor cost model (that is wrong

instruction costs), (ii) inability of the compiler to have a

good knowledge of code generated, and therefore estimating

the cost of instruction sequences that may resemble little the

final assembly code. (iii) disabling succeeding optimizations

due to converting the code into vector form (iv) succeeding

compiler passes degrading the code quality. Nevertheless,

SG-SLP does outperform SLP even in that case.

C. Static Cost

The static cost of the vectorization graph is the only metric

that the vectorization algorithm possesses for estimating the

code’s performance. Subtracting the scalar cost from the

vector cost gives us the cost savings (negative costs are

associated with improved performance). The sum of all the

2 The performance results for these tests on an older Sandybridge system
show a significantly lower slowdown (less than 20%).
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Figure 9. Static cost of vectorization graph (the more negative the better).
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Figure 10. Execution time (normalized to SG-SLP-Users0) for 0, 1, 2
and 4 users. SLP is shown for reference. SG-SLP-Users4 is equivalent to
SG-SLP.

savings is the total static cost of the vectorization graph. This

cost tells us whether the vectorized code is more profitable

than the original scalar, and therefore whether the code

should get vectorized or not.

The static costs for the tests we evaluated are shown in

Figure 9. SG-SLP improves the overall cost consistently.

This is expected behavior since SG-SLP: (i) will attempt

to vectorize at least as much as SLP, and (ii) it will only

vectorize the code if it can improve the static cost over SLP

(steps 5 and 6 of Figure 2).

There are, however, some exceptions. Upon a closer look

we notice that in lattice-basis SLP has a slightly lower

cost than SG-SLP. The reason is that the cost calculation

is not restricted to original instructions only. It also includes

instructions that were emitted by previous runs of the core

SLP algorithm on sections of the code. This results in an

artificial improvement of the cost of SLP. For example a first

run of SLP may emit insert/extract instructions which can get

vectorized by a succeeding run of SLP on neighboring code.

In SG-SLP, however, these additional instructions would not

have been emitted in the first place.

D. Sensitivity to Number of Users

As we have discussed in Section IV-D, SG-SLP’s region

extends towards the users. We only consider a small number

of them in order to reduce the complexity. We empirically

found that a value of 4 provides good coverage. Figure 10

shows the execution time when we vary the number of users
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Figure 11. Total number of potentially vectorizable nodes explored.
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Figure 12. Number of graphs (regions) created.

from 0 to 4. SG-SLP-Users4 is referred to as SG-SLP by the

rest of the text. As expected, exploring no users (SG-SLP-

Users0) performs the same as SLP . Increasing the number

of users to 1, reaches peak performance for all but lattice-

basis which needs 2 users to perform best.

E. Complexity

SG-SLP operates on a larger region compared to the

original SLP. As already discussed in Section IV-D, SG-SLP

does not increase the number of seeds, which is the main

source of complexity of the algorithm. It does, however,

increase the size of the explored region. In practice, these

regions do not grow to large sizes because of the numerous

restrictions associated with vectorization (same number of

instruction candidates, same instruction types, etc.).

We measured the total number of nodes considered for

vectorization by each of the techniques and show the data

in Figure 11. The figure shows that although SG-SLP can

explore larger regions compared to SLP, it is not uncommon

for it to attempt to vectorize fewer nodes than SLP. This

can happen because while SG-SLP builds a single large

supergraph, SLP builds multiple individual graphs. Several

of these SLP graphs may share nodes, therefore adding to

the times a node gets considered for vectorization. Moreover,

SLP may repeatedly attempt and fail to vectorize these small

graphs for various vector widths, adding to the number

of times these nodes are considered for vectorization. SG-

SLP, on the other hand, may succeed to vectorize a larger

supergraph containing several of the smaller SLP graphs,

saving from the extended exploration.
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Figure 13. Total compilation time (normalized to O3).

Note that when SG-SLP succeeds in vectorizing a super-

graph, it does not need to re-visit the vectorized seeds, nor

build a graph rooted at those seeds. Figure 12 quantifies this

data. It shows the number of times each of the algorithm

grabs a group of seeds and proceeds to build a vectorization

graph. On average, SG-SLP creates fewer (and larger) graphs

compared to SLP. As expected, there is some correlation

between the number of regions created and the exploration

size of Figure 11: the more the created regions, the more

extended the exploration performed by the algorithm. For ex-

ample, SG-SLP generates about half the graphs for inverse-

dc as compared to SLP and this is reflected in the number

of nodes considered for vectorization (about half as well).

Finally, we we show the total compilation time in Fig-

ure 13 to show that the run-time of SG-SLP is comparable

to SLP. We compiled each of the tests 11 times, skipping

the first compilation. On average SG-SLP takes the same

time to compile as SLP (within the noise margin). It is

interesting to note that SG-SLP is often faster than vanilla

SLP. This is attributed to the smaller exploration SG-SLP is

required to do in those cases. This explains the strong corre-

lation between the build time and the number of potentially

vectorizable groups of instructions explored by each of the

techniques (Figure 11). For example dc-coeff shows much

greater exploration in SLP compared to SG-SLP, and at the

same time it takes longer to compile.

In one case the vectorized code appears to compile

slightly faster than O3 (e.g., dc-coeff). The reason is that

the vectorizer, if successful, can reduce the total number of

instructions in the program. Since the complexity of most

compiler algorithms is a function of the size of the code,

therefore the time taken by the optimizations that follow is

reduced. The overall compilation time with the vectorizer

enabled becomes similar (or lower) than with the vectorizer

disabled.

VI. RELATED WORK

A. Vector Processors

Vector machines have been the focus of high performance

computing in both the industry and academia for several

decades. Commercial wide vector machines machines like



[33], [27] or experimental ones like [15] have been used to

accelerate scientific vector code.

Modern graphics processors (GPUs) implement similar

type of wide vector execution, similar to the old vector ma-

chines [19]. Computation is performed in groups of 32 (on

Nvidia), 64 (on AMD) or any of 8/16/32 (on Intel [14]) adja-

cent threads executing in lock-step. Such large vector widths

are possible thanks to data-parallel graphics APIs (e.g.,

OpenGL [35], DirectX [11]) or languages like CUDA [25]

or OpenCL [22], where the programmer explicitly exposes

the available parallelism. Generating vector code for such

inputs is straight forward, since vector parallelism is already

exposed by the programming model to the compiler.

General purpose CPUs have been supporting short SIMD

vector ISAs for several decades. Each vendor supports

its own SIMD ISA, most of which are similar in func-

tionality (examples are MMX/SSE4.x/AVX2/AVX-512 [13],

3DNow! [26], VMX/AltiVec [12], NEON [3]). These SIMD

ISAs are being updated frequently with wider vectors and

more powerful instructions being introduced every few pro-

cessor generations.

B. Loop Vectorization

Loops are the main target of vectorization techniques [39].

The basic implementation strip-mines the loop by the vector

factor and widens each scalar instruction in the body to

work on multiple data elements. Early works of Allen and

Kennedy on the Parallel Fortran Converter [1], [2], the

works of Kuck et al. [16], Wolfe [38] and Davies et al. [8]

solve many of the fundamental problems of automatic vec-

torization. Numerous improvements to the basic algorithm

have been proposed in the literature and implemented in

production compilers. Efficient run-time alignment has been

proposed by Eichenberger et al. [9], while efficient static

alignment techniques were proposed by Wu et al. [40].

Ren et al. [31] propose a technique that reduces the count

of data permutations by optimizing them in groups. Nuz-

man et al. [23] describe a technique to overcome non-

contiguous memory accesses and a method to vectorize outer

loops without requiring loop rotation in advance [24]. A

review of the effectiveness of loop vectorizing compilers

has been studied by Maleki et al. [21]. Recently, architectural

ISA extensions have been proposed by Baghsorkhi et al. [5],

along with novel code generation techniques to allow vec-

torizing otherwise unvectorizable loops with cyclic depen-

dences.

C. SLP Vectorization

SLP (Super-word Level Parallelism) has been introduced

as a complementary auto-vectorization step for straight-line

code. Larsen and Amarasinghe [17] were the first to present

an auto-vectorization technique based on vectorizing inde-

pendent isomorphic scalar instructions with no knowledge of

any surrounding loop. Variants of this algorithm have been

implemented in most major compilers including GCC [10]

and LLVM, with a widely used algorithm being Bottom-Up

SLP [32]. This is the state-of-the-art SLP algorithm and in

this paper we use its LLVM implementation as a baseline

for comparison for our SG-SLP work.

Shin et al. [34] propose an SLP algorithm with a control-

flow extension that makes use of predicated execution to

convert the control flow into data-flow, thus allowing it to

become vectorized. A vectorizer in the instruction selection

phase based on dynamic programming was introduced by

Barik et al. [6], an approach different from most vectorizers.

An automatic vectorization approach that works on straight-

line code is presented by Park et al. [28]. It succeeds in

reducing the overheads associated with vectorization such

as data shuffling and inserting/extracting elements from the

vectors. Liu et al. [20] present a vectorization framework that

improves SLP by performing a more complete exploration of

the instruction selection space while building the SLP tree.

Porpodas et al. [30] apply SLP after first padding the scalar

code with redundant instructions, to convert non-isomorphic

instruction sequences into isomorphic ones, while [29] pro-

poses limiting vectorization to a smaller section of the SLP

graph in order to remove harmful parts. More recently,

Zhou et al. [42] proposed a vectorization technique that aims

at reducing the data re-organization overhead by considering

both intra- and inter-loop parallelism. In another work [41],

the same authors proposed a scheme that enables vectoriza-

tion of SIMD widths that are not supported by the target

hardware, by widening the vector instructions accordingly.

The techniques discussed so far are orthogonal to SG-SLP.

None of them recognized or studied the missed vectorization

opportunities caused by (i) unreachable instructions and (ii)

excessive data sharing between consecutive SLP graphs. SG-

SLP is the first to tackle both problems in a simple yet

effective way by vectorizing on a larger region and without

increasing the time complexity.

VII. CONCLUSION

In this paper we presented SuperGraph-SLP (SG-SLP),

a novel SLP-based auto-vectorization algorithm with higher

vectorization coverage and improved performance compared

to the state-of-the-art bottom-up SLP. The state-of-the-art

algorithm works on bottom-up regions and operates on

them atomically, one by one. We showed that this leads

to missed vectorization opportunities. SG-SLP addresses the

limitations by introducing a vectorization region that extends

both bottom-up and top-down when profitable. This Super-

Graph region allows the SG-SLP vectorizer to: (i) extend

the vectorization scope to code which would otherwise be

unreachable, and (ii) successfully vectorize code that was

previously considered non-profitable, due to extensive data

sharing with neighboring graphs. SG-SLP improves code

quality with little impact on compilation time.
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