
PostSLP: Cross-Region Vectorization of Fully or
Partially Vectorized Code

Vasileios Porpodas and Pushkar Ratnalikar

Intel Corporation, USA
{vasileios.porpodas, pushkar.v.ratnalikar}@intel.com

Abstract. Modern optimizing compilers rely on auto-vectorization al-
gorithms for generating high-performance code. Both loop and straight-
line code vectorization algorithms generate SIMD vector instructions out
of scalar code, with no intervention from the programmer.
In this work, we show that the existing auto-vectorization algorithms
operate on restricted code regions and therefore are missing out vector-
ization opportunities by either generating narrower vectors than those
possible for the target architecture or are completely failing and leaving
some of the code in scalar form. We show the need for a specialized post-
processing re-vectorization pass, called PostSLP, that has the ability to
span across multiple regions, and to generate more effective vector code.
PostSLP is designed to convert already vectorized, or partially vector-
ized code into wider forms that perform better on the target architecture.
We implemented PostSLP in LLVM and our evaluation shows significant
performance improvements in SPEC CPU2006.

1 Introduction

Software applications increasingly rely on SIMD vector-hardware for high perfor-
mance. This reliance on vector-units for performance has also led to the through-
put improvements and refinements of vector instruction sets (ISAs), such as
the Intel®AVX-512. Software developers have a few options for exploiting the
full potential of vector-hardware: They can use target-specific intrinsics, they
can call high-performance libraries, or they can use programming models like
OpenMP [16].All of these approaches require additional effort by the software
developer, and they can lead to non-portable code or code with non-portable per-
formance. Compiler auto-vectorization aims at automatically converting scalar
code into vector code, tuned for the target hardware.

There are two primary approaches for vectorizing scalar code. Loop vector-
ization widens the operations within a loop body [6,1,15], while SLP vectoriza-
tion [8,25] replaces groups of isomorphic instructions with their corresponding
vector instructions. Most production compilers including GCC [4] and LLVM [9]
implement both.

The main motivation for this work is the observation that current Loop and
SLP vectorization algorithms miss out vectorization opportunities and, in several
cases, generate narrower vectors than are possible. Loop vectorizers, like the one
in LLVM, are restricted to vectorizing within a set of consecutive iterations,
combining consecutive iterations of a loop to a vector form. It does not check
whether these could be combined with instructions from subsequent iterations
that belong to the next region. Opportunities like these show up when the loop-
body contains instructions of different bit-widths, as explained in Section 3.3.

1

The SLP vectorizer also operates on regions which terminate on one end at
the seed instructions (stores to consecutive memory locations, reduction tree,
etc.) and at the other end at either load or gathering points where isomorphism
no longer holds. Current approaches do not consider cross-region vectorization,
resulting in generation of smaller vectors, often leaving some code in scalar form.

In this paper we introduce a new post-vectorization technique called PostSLP
that can successfully vectorize code that is not vectorized by existing state-
of-the-art auto-vectorization algorithms. It specifically focuses on vectorization
of operations across vectorized regions or at the boundaries of those regions.
We show that that PostSLP can successfully form wider vectors out of either
partially vectorized code (i.e., code with some scalars and some vectors), or out
of fully vectorized code but with narrower vectors. This results in generation of
wider vectors out of either partially vectorized code or already vectorized code
but with narrower vectors. Our contributions include:

1. Highlighting a major weakness in existing SLP and loop-vectorization ap-
proaches with respect to their ability to maximize the vector length.

2. Proposing a new compiler post-vectorization pass, to be placed after both
auto-vectorization passes in the pipeline, that vectorizes code (i) cross vector
regions horizontally, and (ii) can seamlessly handle both vector and scalar
instructions.

3. Evaluating our algorithm in an industrial compiler and showing that the pro-
posed pass pipeline, with PostSLP, can consideralby improve performance
of real-world workloads.

2 Background on Auto-Vectorization

Auto-Vectorization is a performance-critical optimization in modern compilers.
Its goal is to replace scalar code with equivalent vector code, which has higher
performance when the target architecture supports SIMD vector units. Modern
compilers typically have two approaches to auto-vectorization,

1. Loop-based auto-vectorization - This approach primarily targets loops and
depends on dependence analysis to determine legality of the transforms
that would generate vector-code that is faster but semantically equivalent
to the scalar version. Classical Loop-based auto-vectorization strategies are
described in [6], while approaches described in [15,14] are relatively recent
advances in auto-vectorization of loops.

2. Straight-line code auto-vectorization - These include SLP-style algorithms,
e.g. [8,25,23]. They identify sets of scalar instructions and replace them with
vector instructions. These algorithms operate on any straight-line code, any-
where within the program including loop-bodies after loop-optimizations are
unable to vectorize the code.

2.1 SLP Vectorization

Since PostSLP is inspired by SLP, we will provide a high-level overview of SLP
in this section. SLP (Superword Level Parallelism) performs straight-line code
vectorization. It does not require a loop structure, instead it can analyze any

2

straight-line piece of code including loop bodies. It collects instructions that
can be grouped together into vectors and replaces them with the corresponding
vector instructions. For example, given the code on the left hand side of Figure 1,
SLP will generate the code at the right hand side.

A[i] = B[i] + C[i]

A[i+1] = B[i+1] + C[i+1]

A[i+2] = B[i+2] + C[i+2]

A[i+3] = B[i+3] + C[i+3]

SLP A[i:i+3] = B[i:i+3] + C[i:i+3]

Fig. 1: SLP vectorization.

LV
A[i] = B[i] + C[i] A[i:i+3] = B[i:i+3] + C[i:i+3]

D[i] = E[i] − F[i] D[i:i+3] = E[i:i+3] − F[i:i+3]

for (i = 0; i < N; i += 1) for (i = 0; i < N; i += 4)

Fig. 2: Loop-vectorization.

Find scalar seed instructions

Get a seed group

Build SLP graph of vectorizable groups

Compute scalar and vector cost of graph

Profitable ?

Code generation

More seeds ?

YES

NO

YES

Done

Fig. 3: SLP algorithm

The SLP-algorithm begins by identifying set of seed instructions. An overview
of the algorithm is shown in Figure 3. These sets of instructions are good starting
point for vectorization, e.g., stores to consecutive memory addresses, or instruc-
tions which form reduction trees. More specifically, the set of seeds contains at
least 2 instructions, which: 1. have the same bit-width and type; 2. have no
dependencies among them; 3. access adjacent locations if they are memory in-
structions, or form a reduction tree (e.g., a reduction tree of additions). The seed
instructions are the starting point of the vectorizable graph, i.e., they form the
root group node.

Using these seed instructions as the root node, the compiler follows the use-
def chains towards the definitions, looking for instructions that can form more
group nodes. This bottom-up approach of building the graph is followed by most
state-of-the-art implementations of SLP-algorithms including LLVM and GCC.
When it encounters an instruction that cannot be part of the group, it stops
extending the group.

After the SLP graph is built, the algorithm performs profitability analysis of
the code, by comparing the cost of leaving the graph in scalar form and cost of
vectorizing the instructions in the graph. The analysis should also account for
execution of additional instructions that have to be generated. An example would
be, if the group generated <4 x i32> instructions, but there are external scalar
i32 uses, we have to generate extractelement instructions that will move the
data from the vectors to the scalars. The accuracy of the target-specific cost-
analysis is critical in determining the profitability of the group. Once all the seed
instructions of the code are exhausted, the process stops.

2.2 Loop Vectorization

Unlike SLP, the loop vectorizer can only operate on loops. It is an inherently
different vectorization approach, as it does not work by searching the code for

3

vectorization candidates. Instead, it relies on the semantics of the loop: An in-
struction in a loop will repeat across the loop iterations. Therefore, the loop
vectorizer will widen each instruction in the loop, vectorizing across consecutive
loop iterations. Obviously, just like in SLP, vectorization is not always legal,
so the loop dependence analysis needs to be queried for the necessary checks.
Finally, similarly to SLP, loop vectorization is not always profitable, so the cost
model needs to decide on whether the loop should get vectorized or not. In the
example of Figure 2, the statement on the left hand side will be vectorized as
shown on the right.

3 Motivation

3.1 Restrictive Regions

The example of Figure 4 shows how we can improve the code generated by the
state-of-the-art compiler with the help of PostSLP.

Given the code of Figure 4(a), the SLP auto-vectorizer will first notice that
the scalar stores A[i+0] and A[i+1] are consecutive, and the same for the stores
to A[i+3] and A[i+4]. There is a gap between these two group stores, as there
is no store to A[i+2] in the code. Please note that such code is more commonly
a result of struct accesses, rather than array accesses, but we are using the array
access notation for better readability of the example.

The SLP vectorizer will form two separate groups out of these two sets of
consecutive stores, and will therefore operate on these two seeds independently.
Each seed group becomes a separate bottom-up region, as shown in Figure 4(b).
Region 1 includes the stores to A[i+0] and A[i+1] and the rest of the definitions,
which is the two additions, the two subtractions and the loads from B[i+0],
B[i+1], C[i+0], C[i+1] and D[i+0], D[i+1]. Similarly, Region 2 includes
the stores to A[i+2], A[i+3], and the rest of the definitions, which is the
two additions and the two subtractions, and the loads from B[i+2], B[i+3],
C[i+2], C[i+3] and D[i+2], D[i+3].

SLP operates on each region independently, as there are no inter-region de-
pendencies that would allow it to cross. SLP’s code generation will first generate
vector code for Region 1, and will then generate code for Region 2, as shown
in Figure 4(c). The first two statements have been vectorized into one 2-wide
vector statement, and the two last statements into a second vector statement.

PostSLP can do better than this. If we take a closer look into the code of
Figure 4(c), and its corresponding DAG of Figure 4(d), we can see that there is
opportunity for further vectorization by combining instructions across regions.
The vector loads from B[i:i+1] and B[i+2:i+3] are accessing adjacent memory
locations and can therefore be combined into a more efficient 4-wide vector load
from B[i:i+3], as shown in Figure 4(e). Similarly, the loads from C[i:i+1] and
C[i+2:i+3], the loads from D[i:i+1], and D[i+2:i+3] and the 2-wide vector
additions and subtractions can all be combined into 4-wide operations. Since the
2-wide vector values are still used by the 2-wide stores to array A, we need to
add additional shuffle1 instructions that extract the 2-wide subvectors. The
resulting wider (partially 4-wide) optimized code is shown in Figure 4(f).

1 The shuffle instructions of these examples are similar to LLVM’s shufflevector
instructions.

4

A[i+4] = B[i+3] + C[i+3] − D[i+3]

A[i+1] = B[i+1] + C[i+1] − D[i+1]

A[i+3] = B[i+2] + C[i+2] − D[i+2]

A[i+0] = B[i+0] + C[i+0] − D[i+0]

long A[], B[], C[], D[]

(a) Source Code

Region1

+

−−

D[i+1]

+

B[i+1]B[i+0]

D[i+0]C[i+1]C[i+0]

A[i+0] A[i+1]

+

−−

+

Region2

A[i+3] A[i+4]

B[i+2] B[i+3]

C[i+2] C[i+3] D[i+2] D[i+3]

(b) Vectorization Regions

A[i+0:i+1] = B[i:i+1] + C[i:i+1] − D[i:i+1]

A[i+3:i+4] = B[i+2:i+3] + C[i+2:i+3] − D[i+2:i+3]

(c) After Vectorization, input to PostSLP

−

+

A[i:i+1]

D[i:i+1]C[i:i+1]

B[i:i+1]

+

−

C[i+2:i+3] D[i+2:i+3]

B[i+2:i+3]

A[i+3:i+4]

(d) DAG before PostSLP

ShuffleShuffle

A[i:i+1] A[i+3:i+4]

+ +

C[i+2:i+3]C[i:i+1] D[i+2:i+3]

−

D[i:i+1]

−B[i+2:i+3]B[i:i+1]

(e) DAG formed by PostSLP

A[i+0:i+1] = shuffle<0:1>(Tmp)

Tmp = B[i:i+3] + C[i:i+3] − D[i:i+3]

A[i+3:i+4] = shuffle<2:3>(Tmp)

(f) Code generated by PostSLP

Fig. 4: PostSLP properly vectorizes sub-optimal regions.

3.2 Partially Vectorized Code

In the previous example of Section 3.1, we showed that the state-of-the-art al-
gorithms can vectorize with smaller than the ideal vector width, because, by
design, they operate on regions that restrict the instructions that get considered
for vectorization.

In this example we show that the auto-vectorizer may partially vectorize
some code, which is an opportunity for PostSLP to further vectorize the code,
as shown in Figure 5.

When the state-of-the-art SLP auto-vectorizer is given the code of Fig-
ure 5(a), it will identify the two stores to A[i+2] and A[i+3] as stores to
consecutive addresses and will form a seed group out of them. The stores to
A[i] and A[i+5] are accessing memory locations that are not consecutive to
the seed group, therefore they are not considered for vectorization. The vector-
izer will then from a bottom-up vector region, as shown in Figure 5(b), which
includes the two additions, the two subtractions and the loads from B[i+1],

5

long A[], B[], C[], D[]

A[i+0] = B[i+0] + C[i+0] − D[i+0]

A[i+2] = B[i+1] + C[i+1] − D[i+1]

A[i+3] = B[i+2] + C[i+2] − D[i+2]

A[i+5] = B[i+3] + C[i+3] − D[i+3]

(a) Source Code

A[i+0]

+

−

D[i+0]C[i+0]

B[i+0]

+

−−

+

Region

A[i+3]

D[i+1]

+

−

A[i+5]

B[i+3]

C[i+3]D[i+3]

B[i+1]B[i+2]

C[i+1]C[i+2] D[i+2]

A[i+2]

(b) Vectorization Regions

A[i+0] = B[i+0] + C[i+0] − D[i+0]

A[i+2:i+3] = B[i+1:i+2] + C[i+1:i+2] − D[i+1:i+2]

A[i+5] = B[i+3] + C[i+3] − D[i+3]

(c) After Vectorization, input to PostSLP

+

A[i+1:i+2]

D[i+1:i+2]

+

B[i+3]B[i+1:i+2]

D[i+3]C[i+3]

−−

+

A[i]

B[i]

C[i]

−

D[i] C[i+1:i+2]

A[i+5]

(d) DAG before PostSLP

Shuffle Shuffle Shuffle

A[i] A[i+1:i+2]

+ + +

B[i] B[i+1:i+2] B[i+3]

C[i] C[i+1:i+2] C[i+3] D[i] D[i+1:i+2]D[i+3]

− −−

A[i+5]

(e) DAG formed by PostSLP

A[i+5] = shuffle<3>(Tmp)

A[i+2:i+3] = shuffle<1:2>(Tmp)

A[i+0] = shuffle<0>(Tmp)

Tmp = B[i:i+3] + C[i:i+3] − D[i:i+3]

(f) After PostSLP

Fig. 5: PostSLP on partially vectorized code.

B[i+2], C[i+1], C[i+2] and D[i+1], D[i+2]. Since there are no more seeds
available to the vectorizer, the rest of the code will remain scalar.

The code generator of the vectorization pass will widen each instruction in
the region and will generate the code of Figure 5(c). This code includes two scalar
statements A[i+0]=B[i+0]+C[i+0]-D[i+0], A[i+5]=B[i+3]+C[i+3]-D[i+3],
and the 2-wide: A[i+2:i+3]=B[i+1:i+2]+C[i+1:i+2]-D[i+1:i+2].

With the help of the PostSLP post-vectorization pass, we can do better.
PostSLP figures out that the scalar loads from B[i+0], B[i+1:i+2] and B[i+3]
are all consecutive in memory, and will optimize them into a single 4-wide load
from B[i+0:i+3], as shown in Figure 5(e). Similarly, the loads from C[i+0],
C[i+1:i+2] and C[i+3] can be combined into a 4-wide load C[i:i+3], the
loads from D[i+0], D[i+1:i+2] and D[i+3] are combined into D[i:i+3], and
also the additions and subtractions can also be combined into 4-wide versions.
The resulting code (Figure 5(f)) also contains shuffle instructions that extract
the scalars or sub-vector elements from the 4-wide vectors.

6

3.3 Vectorizing for the Widest Data Type

When a loop contains instructions of various bit-widths, for example f32 (float)
and f64 (double), the vectorizer may try to vectorize based on the widest data
type (in this case f64). This ensures that the widest vector type corresponds to
a legal instruction on the target architecture.

for (i = 0; i != N; ++i) {

}

double A[], B[], C[], D[];

float E[], F[], G[], H[];

A[i] = B[i] + C[i] + D[i]

E[i] = F[i] + G[i] + H[i]

(a) Source Code

for (i = 0; i != N; i += 4 + UF) {

}
// Repeats due to unrolling UF times

A[i:i+3] = B[i:i+3] + C[i:i+3] + D[i:i+3]
E[i:i+3] = F[i:i+3] + G[i:i+3] + H[i:i+3]

double A[], B[], C[], D[];
float E[], F[], G[], H[];

A[i+4:i+7] = B[i+4:i+7] + C[i+4:i+7] + D[i+4:i+7]
E[i+4:i+7] = F[i+4:i+7] + G[i+4:i+7] + H[i+4:i+7]

(b) Vectorized Code

+

+

+

128 bits

+

D[i:i+3]C[i:i+3]

256 bits

for (...) {

// Repeats due to unrolling

A[i:i+3]

B[i:i+3]

}

E[i:i+3]

F[i:i+3]

G[i:i+3] H[i:i+3]

(c) Loop Vectorized

256 bits

+ +

++

+

B[i:i+3] +

D[i:i+3]C[i:i+3]

256 bits

A[i:i+3]

for (...) {

// Repeats due to unrolling

}

E[i:i+3] E[i+4:i+7]

F[i:i+3] F[i+4:i+7]

G[i:i+3] G[i+4:i+7] H[i:i+3] H[i+3:i+7]

(d) Vectorized by PostSLP

Fig. 6: PostSLP vectorizes wider than the Loop Vectorizer.

Given the code of Figure 6(a), LLVM’s loop vectorizer will vectorize it 4-wide
for a 256-bit target architecture, because we can only fit 4 instructions of the
widest type. LLVM’s vectorizer will also unroll the code 8 times, to help increase
ILP, leading to the code of Figure 6(b).

Now let’s take a closer look into the vector widths generated by the loop
vectorizer. Figure 6(c) highlights the vector width differences within the for
loop code. Some code trees are 256-bit wide (A[...] = B[...] + C[...] +
D[...]), while others are 128-bit wide (E[...] = F[...] + G[...] + H[...]),
leaving the target vector hardware under-utilized. This is where the PostSLP can
improve the computational throughput. By grouping together and re-vectorizing
the consecutive 128-bit instructions, it can form wider 256-bit instructions, as
shown in Figure 6(d). All of the resulting code is 256-bit wide, with (A[...] =
...) being 4-wide and (D[...] = ...) being 8-wide. This code will obviously
perform faster on the target hardware.

7

4 PostSLP

This section describes the PostSLP algorithm in detail. It is implemented as a
separate compiler pass in LLVM’s high level optimizer opt. It is placed right after
the SLP Vectorizer, in order to post-process the code that has been vectorized
by either vectorizer. The algorithm resembles the high level structure of the SLP
algorithm, but there are several major differences:

1. Its groups can contain both scalars and vectors,
2. It can cross vectorization regions horizontally by considering each widening

point as a potential seed,
3. It can grow the graph towards either definitions or uses, similarly to [18],
4. Its code generator and scheduler can effectively generate code for any com-

bination of scalars and vectors in the groups.

4.1 Mix of Scalar and Vector Seeds

The algorithm starts by looking for load and store instructions (either scalars
or vectors) that are accessing consecutive memory addresses (Listing 1.1 line 6).
All mixed groups of scalar and vector loads or stores that can be combined into
wider vector loads or stores with vector sizes supported by the target architecture
become the seed groups. For example, the two <2 x i64> loads from B[i:i+1]
and B[i+2:i+3] of Figure 4(c) become a valid load group, since a <4 x i64>
instruction is supported by our target architecture. Similarly, the three loads
from B[i+0], B[i+1:i+2], B[i+3] of Figure 5(c) are i64, <2 x i64> and i64
which can also be combined into a single <4 x i64> vector. Please note that
unlike LLVM’s SLP algorithm, we are not considering a group of scalar-only
instructions as a seed, because we are only interested in groups of vectors or
groups of scalars and vectors.

Listing 1.1: Main function of PostSLP.

1 // Entry point of the function pass.
2 PostSLP(F) {
3 // Go through all basic blocks.
4 for (BB : F) {
5 // Looks for seed instructions.
6 findConsecutiveLoadsAndStores()
7 // The main function of the pass.
8 buildTreesAndCodegen()
9 }

10 }
11
12 // The main body of the algorithm.
13 buildTreesAndCodegen() {
14 while(SeedGroup=getNextSeedGroup()){
15 if (canSchedule(seedGroup)) {

16 // Build tree.
17 growTree(SeedGroup)
18 // Evaluate cost.
19 Cost = getTreeCost(SeedGroup)
20 // Check profitability
21 if (Cost < Threshold) {
22 // Generate code only if

profitable.
23 codeGenTree(SeedGroup)
24 }
25 }
26 // Remove seed from worklist
27 removeTreeSeeds(SeedGroup)
28 }
29 }

4.2 Tree Creation

Then next step is to build the trees for all seeds and generate code (Listing 1.1
line 8). The body of this function is listed in line 13.

8

The function keeps iterating until it has processed all seeds (line 14). It grabs
a seed group and follows both the uses and definitions of each instruction in the
group node, in an attempt to grow the tree with new nodes (line 17), similarly
to [18]. The body of this function is listed in Listing 1.2 line 2. The candidates
for new group node need to meet certain requirements, which are part of the
isCandidate() function call of Listing 1.2 lines 40 and 19, otherwise they get
discarded:

– They have to be of the same opcode, for example all additions, or all stores.
Some mixing of opcodes could be allowed with minimal modifications (for
example additions with subtractions), but it is currently not supported by
our implementation.

– They need to have a single use. This requirement guarantees that we are
building a tree, not a generic graph, which simplifies code generation. This
constraint could also be removed in a future implementation.

– The type of the instructions (e.g., int8, <4 x float>, <2 x i64> etc.)
should: (i) have compatible scalar types, and (ii) should be supported by the
target architecture for the desired vector length. For example, a <5 x i64>
is not supported by a 256-bit AVX2 target.

– The values must not repeat (each instruction is allowed once) and should
not be empty.

– The vector size should remain the same across the whole tree. For example,
you are not allowed to have both <4 x i32> and <8 x i32> nodes in the
tree.

– The instruction’s opcode should be one of the white-listed ones. For example,
branches are not vectorized.

– The instruction should not be already part of the tree. If it is, then we don’t
need to extend the tree further, as these nodes have already been visited. In
this case, the code generator will either re-use the vector value of the node,
or emit a shuffle operation if needed.

In addition to these requirements, it must be legal for the candidates to be
scheduled together back-to-back without violating any dependencies. Otherwise
vectorizing the instructions would break the program semantics. This is done
with the help of an instruction scheduler, being called in Listing 1.2 lines 26 and
26. This is a list-scheduler capable of operating on groups of scalars, vectors, or
a mix of the two. It is designed to operate on a dependence DAG that gets built
on-the-fly for the instructions within an instruction window that includes all the
instructions in the tree so far, including the candidate group.

This whole process of (i) forming a group, (ii) checking its eligibility and
legality, and (iii) attempting to grow the tree towards the definitions and uses,
repeats until there are no more candidates to add to the tree.

Examples of these trees are shown in Section 3. Figures 4(e) and 5(e) show
the group trees formed for the examples of Sections 3.1 and 3.2 respectively. The
green nodes represent the instructions that will be grouped together into 4-wide
vectors, while the non-colored nodes at the root of the tree show the instructions
that will not be modified by PostSLP. Each narrower (scalar or narrower vector)
store instruction gets its input through the shuffle nodes (shown in yellow)2.

2 In LLVM, we use either the shufflevector instructions when the output is a
vector instruction, or extractelement when the output is scalar

9

These shuffle instructions create sub-vectors out of the larger input vectors. For
example, the the left hand side shuffle of Figure 4(e) reads a <4 x i64> input
and generates a <2 x i64> output that feeds into the A[i:i+1] store.

4.3 Profitability

Now that the tree has been completed, we have to check whether vectorizing
the tree is profitable (Listing 1.1 line 19) before we generate code. To this end
we need to compare the initial cost of the code against the new one, after Post-
SLP. The cost calculation is done by querying the TTI cost model of LLVM for
each individual instruction and summing each individual cost. The profitability
function we use considers the following: If the projected cost of the code after
PostSLP is less than the original cost (line 21), then PostSLP is considered prof-
itable and we proceed with code generation (line 23). Since PostSLP is capable
of handling any mix of scalar and vector instructions, it is particularly important
in our case to model the cost of the extraction and insertion from/to vectors or
scalars correctly.

4.4 Code Generation (Scheduling and Widening)

The code generation step modifies the IR (Listing 1.1 line 23). It performs two
distinct operations.

– The first one performs instruction scheduling on the tree, using the same
algorithm as in the tree-building phase (as discussed in Section 4.2). This
step will always succeed (i.e, we will not find grows that are illegal to sched-
ule), since we have already checked that each individual group node can be
scheduled while building the tree itself (Listing 1.2 lines 26 and 47). This
step makes sure that the instructions in each group node are scheduled back-
to-back, and are placed in the same order as when the dependencies where
checked during grow tree().

– The second part is instruction widening, which replaces the individual in-
structions in each group node with their widened counterpart. This is per-
formed in a reverse-post-order traversal of the tree (top-down). A vector
instruction is generated with a bit-width equal to the sum of the individual
instructions in the group node. For example, if the group contained two i32
instructions and one <2 x i32>, the resulting vector instruction will be of
<4 x i32> type. The newly generated vector instruction is then emitted
in the code and the corresponding group instructions are erased. This new
instruction gets its operands from its immediate predecessors in the use-def
chains, as they have already been widened by the algorithm, because of the
top-down traversal. Finally, for the external uses and operands to the vector-
ized instructions, the appropriate vector extract/insert instructios get gen-
erated using either insertelement, extractelement, or shufflevector
instructions.

Once widening is performed, the initial group and any other groups that
belong in the group tree get removed from the worklist, as we are done working
with it (line 27). Finally, the algorithm repeats until no more groups are left in
the worklist (line 14).

10

Listing 1.2: PostSLP grow tree function

1 // Entry point for growTree function
2 growTree(SeedGroup) {
3 growTreeRec(SeedGroup)
4 }
5 // Recursion towards Defs and Uses
6 growTreeRec(Group) {
7 Group.Users = getUsers(Group)
8 if (Group.Users)
9 growTreeRec(Group.Users)

10 Group.Operands = getOperands(Group)
11 if (Group.Operands)
12 growTreeRec(Group.Operands)
13 }
14 // Appends users to Group if possible
15 getUsers(Group) {
16 for (Instr in Group.getInstrs()){
17 for (User in Instr.getUsers()) {
18 OperandIdx = getOperandIdx(User,

Instr)
19 if (! isCandidate(User)) {
20 Group.setMustScatterUsers()
21 return
22 }
23 }
24 Users.push_back(User);
25 NewGroup = createNewGroup(Users)
26 if (! tryScheduleGroup(NewGroup)) {
27 delete NewGroup
28 Group.setMustScatterUsers()
29 return

30 }
31 Group.setUser(NewGroup)
32 NewGroup.setOperand(OperandIdx,

Group)
33 }
34 }
35 // Try append operands to Group
36 getOperands(Group) {
37 for (Instr in Group.getInstrs()) {
38 for (Oprnd in Instr.getOperands()){
39 OprndIdx = getOperandIdx(Instr,

Oprnd)
40 if (! isCandidate(Oprnd)) {
41 Group.setMustGatherOperand(

OprndIdx)
42 return
43 }
44 Operands.push_back(Oprnd)
45 }
46 NewGroup = createNewGroup(Operands)
47 if (! tryScheduleGroup(NewGroup)) {
48 delete NewGroup
49 Group.setMustGatherOperand(

OprndIdx)
50 continue;
51 }
52 Group.setOperand(OprndIdx, NewGroup)
53 NewGroup.setUser(Group);
54 }
55 }

5 Results

5.1 Experimental Setup

We implemented PostSLP in the development branch of LLVM 7 as a separate
compiler pass. The pass executes after LLVM’s SLP vectorizer pass.We compiled
the workloads with the following configurations: O3: which corresponds to -O3
which has all vectorizers enabled by default, and O3+PostSLP: which is -O3
with the PostSLP pass also enabled.

All C/C++ workloads were compiled with clang/clang++ using -O3
-march=skylake -mtune=skylake. The target platform is a Linux-4.9.0, glibc-2.23
based system with an Intel® Core� i5-6440HQ CPU and 8 GB RAM. We evalu-
ated our approach on unmodified SPEC CPU2006. We also extracted unmodified
kernels from SPEC CPU2006 to help focus on code that triggers PostSLP. mFor
all results, we report the average of 10 executions, after skipping the first warm-
up run. The error bars show the standard deviation. The profitability scores we
report are based on LLVM’s TTI costs (see Section 4).

5.2 Performance of Full Benchmarks

We measured the performance of full CPU2006 benchmarks and we report the
results in Figure 7(a). The results are normalized to O3. Please note that we are
only showing the results for those workloads that triggered PostSLP, the rest
of them perform identically to O3. There are three benchmarks that perform
significantly better than O3, namely 444.namd (about 0.4%), 464.h264ref (about
2.5%), and 482.sphinx3 (about 1.1%).

These are very significant performance improvements given that our base-
line is an industrial strength compiler, that has been optimized and tuned for

11

SPEC benchmarks over several years. Moreover, our comparison is a fair one, as
PostSLP is designed within the constraints of production compilers: i.e, strict
constraints in space and time complexity.

For the remaining workloads, O3+PostSLP performs practically identical to
O3, with the performance differences being within the noise margin.

0.98x

0.99x

1.00x

1.01x

1.02x

1.03x

453.povray

444.namd

450.soplex

464.h264ref

433.milc

447.dealII

482.sphinx3

403.gcc

456.hmmer

GMean

O3 O3+PostSLP

(a) Speedup normalized to O3.

-500.0

-450.0

-400.0

-350.0

-300.0

-250.0

-200.0

-150.0

-100.0

-50.0

0.0
453.povray

444.namd

450.soplex

464.h264ref

433.milc

447.dealII

482.sphinx3

403.gcc

456.hmmer

avg

O3 O3+PostSLP

(b) Profitability Score.

Fig. 7: Full benchmark results.

The profitability score is determined statically by the sum of CostAfter −
CostBefore for all trees formed by PostSLP. As mentioned in Section 4.3, non
profitable trees are discarded by the algorithm and are not considered for code
generation. Therefore, the profitability score for any workload is always greater
or equal to zero. The more negative the score the better, as negative values
correspond to cost savings. The profitability calculation makes use of LLVM’s
TTI cost modeling API for computing the costs, but as a rule of thumb, a simple
fast instruction has a cost of 1.

Figure 7(b) reports the accumulated profitability score across each bench-
mark, as reported by the PostSLP pass. This is a static metric that reports how
much more profitable PostSLP was compared to O3. All of the benchmarks that
show a significant performance improvement, namely 444.namd, 464.h264ref and
482.sphinx3, also show a large improvement in profitability score. However, other
benchmarks like 447.dealII, do not show similar overall speedups, even though
their profitability score is quite considerable. This is not a surprising outcome,
as the static profitability score does not necessarily correlate strongly with per-
formance improvements. For example, it is possible that all of the profitability
improvements correspond to code sections with very small execution time cov-
erage.

5.3 Kernels

To help show that PostSLP has a wider applicability and can help improve real
code regardless of its performance impact across a full benchmark, we extracted
some functions from CPU 2006 where PostSLP triggered3 . We reported the exe-
cution speedup normalized to O3 in Figure 8(a). We also included the motivating
examples of Sections 3.1 and 3.2 for completeness.

3 We extracted: 433-su3-rdot (su3 rdot.c:10), 433-realtrace-su3 (realtr.c:14) from
433.milc, and 483-gs-compute-closest-cw (gs.c:214), 482-vector-dist-maha (vec-
tor.c:266), and 482-vector-dist-eucl (vector.c:238) from 482.sphinx3.

12

Since these are whole unmodified functions, the performance improvements
we are getting depend on the coverage of the code that got widened by PostSLP
compared to the rest of the code in the function. Therefore the performance im-
provements vary considerably across kernels. It is interesting to note that some
of the kernels show some very high performance improvements (e.g., the 433.milc
derived ones), while the full benchmark they got extracted from, shows no per-
formance difference. This shows that PostSLP does have a wider applicability,
regardless of its impact on full spec benchmarks.

0.9x

1.0x

1.1x

1.2x

1.3x

1.4x

1.5x

1.6x

1.7x

1.8x

1.9x

433-su3-rdot

433-realtrace-su3

482-gs-compute-closest-cw

482-vector-dist-maha

482-vector-dist-eucl

motiv-regions

motiv-scalars

motiv-widest

GMean

O3 O3+PostSLP

(a) Speedup Normalized to O3.

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0
433-su3-rdot

433-realtrace-su3

482-gs-compute-closest-cw

482-vector-dist-maha

482-vector-dist-eucl

motiv-regions

motiv-scalars

motiv-widest

avg

O3
O3+PostSLP

(b) Profitability Scores of Kernels.

Fig. 8: Kernel results.

Now, let’s consider the profitability scores of Figure 8(b). This plot does
indeed show that PostSLP widening improves the profitability of the code, ac-
cording to the compiler’s cost model. However, if we contrast this plot against the
results in Figure 8(a), we can see that cost improvements do not necessarily result
in actual performance improvements. For example, 482-gs-compute-closest-cw,
barely shows any performance improvements, even though it has a healthy prof-
itability score of -20. This is primarily because, in our experience, LLVM’s TTI
API is overly conservative in reporting costs and is rather oblivious of low-level
optimizations which are possible in the back-end.

5.4 Compilation Time

Our PostSLP algorithm introduces a new compilation pass in the pipeline. This
introduces a very small compilation time overhead in the general case when
compiling large benchmarks. The worst case scenario is when the PostSLP pass
gets activated for the main bulk of the workload being compiled. We measured
a worst-case compilation-time increase of 14% in a couple of kernels, with a geo-
mean increas of about 8%. Please note that when compiling full benchmarks,
the compilation time overhead is barely noticeable.

6 Related Work

6.1 Loop Auto-Vectorization

Auto-vectorization techniques have traditionally focused on vectorizing loops [28].
These loop-based algorithms work by fusing consecutive loop iterations into a

13

single vectorized iteration in a strip-mining fashion, widening each scalar in-
struction in the loop body to work on vector elements. Early works of Allen and
Kennedy on the Parallel Fortran Converter [1,2], the works of Kuck et al. [7],
Wolfe [27], and Davies et al. [3] solve many of the fundamental problems of loop
vectorizers. Since then, numerous other improvements have been proposed in the
literature and implemented in production compilers, e.g. [24,14].

6.2 SLP Auto-Vectorization

SLP Vectorization was first proposed by Larsen and Amarasinghe [8]. It is a com-
plementary technique to loop vectorization which focuses on vectorizing straight-
line code instead of loops. Straight-line code vectorization algorithms have been
implemented in compilers such as GCC [4] and LLVM, with bottom-up SLP
(Rosen et al. [25]) being one that is widely adopted due to its low run-time
overhead while still providing good vectorization coverage.

Since its conception, several improvements have been proposed for straight-
line-code vectorization in general [26,10,12,5,17]. The widely used bottom-up
SLP algorithm has also been improved in several ways [20,19,18,23,22,21]. Com-
bining loop-vectorization and SLP has been explored by [25] and [30]. while [29]
enables SIMD widths that are not supported by the target hardware.

6.3 Re-vectorization

Re-vectorization has recently become the focus of research papers that attempt
to improve the performance of legacy binaries [11], or legacy hand-vectorized
source code [13]. Both approaches implement an SLP-style algorithm along with
specific transformations for their domain, e.g., shuffle optimization, unrolling.

PostSLP, on the other hand, is designed to improve auto-vectorization in the
common compilation flow of production compilers. To our knowledge, it is the
first work that addresses the issues related to vectorization regions and partially
vectorized code. PostSLP is a post-processing pass, placed after both vectorizers
in the compilation pipeline. It optimizes the sub-optimally vectorized code, by
operating across regions, combining both scalars and vectors, further widening
instructions that were either completely missed or were sub-optimally vectorized
by the production loop and SLP vectorizers.

7 Conclusion

We presented PostSLP, a novel post-processing cross-region vectorization pass
that aims at improving the performance of code that has either been partially
vectorized, or fully vectorized but with a sub-optimal vector width. It is capa-
ble of combining vector instructions, scalar instructions or any mix of the two,
generated by either the loop or the SLP vectorization passes. As a result, Post-
SLP can generate more efficient, wider vector instructions out of smaller vectors
or scalars generated by the prior vectorization passes. We have implemented
PostSLP in LLVM and have evaluated its effectiveness on SPEC CPU2006. The
results show improved performance on real-world code with a minimal increase
in compilation time.

14

References

1. J. R. Allen and K. Kennedy. PFC: A program to convert fortran to parallel form.
Technical Report 82-6, Rice University, 1982.

2. J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector
form. TOPLAS, 1987.

3. J. Davies, et al The KAP/S-1- an advanced source-to-source vectorizer for the S-1
Mark IIa supercomputer. In ICPP, 1986.

4. GCC: GNU compiler collection. http://gcc.gnu.org, 2015.
5. J. Huh and J. Tuck. Improving the effectiveness of searching for isomorphic chains

in superword level parallelism. In MICRO, 2017.
6. K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers Inc., 2001.
7. D. J. Kuck, et al Dependence graphs and compiler optimizations. In POPL, 1981.
8. S. Larsen and S. Amarasinghe. Exploiting superword level parallelism with multi-

media instruction sets. In PLDI, 2000.
9. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis transformation. In CGO, 2004.
10. J. Liu, Y. Zhang, O. Jang, W. Ding, and M. Kandemir. A compiler framework for

extracting superword level parallelism. In PLDI, 2012.
11. Y.-P. Liu, et al Exploiting asymmetric simd register configurations in arm-to-x86

dynamic binary translation. In PACT, 2017.
12. C. Mendis and S. Amarasinghe. goSLP: Globally Optimized Superword Level

Parallelism Framework. OOPSLA, 2018.
13. C. Mendis, A. Jain, P. Jain, and S. Amarasinghe. Revec: Program rejuvenation

through revectorization. CC, 2019.
14. D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of interleaved data for

SIMD. In PLDI, 2006.
15. D. Nuzman and A. Zaks. Outer-loop vectorization: revisited for short SIMD ar-

chitectures. In PACT, 2008.
16. OpenMP Application Program Inteface. https://www.openmp.org/specifications/.
17. Y. Park, S. Seo, H. Park, H. Cho, and S. Mahlke. SIMD defragmenter: Efficient

ILP realization on data-parallel architectures. In ASPLOS, 2012.
18. V. Porpodas. SuperGraph-SLP Auto-Vectorization. In PACT, 2017.
19. V. Porpodas and T. M. Jones. Throttling automatic vectorization: When less is

more. In PACT, 2015.
20. V. Porpodas, et al. PSLP: Padded SLP automatic vectorization. In CGO, 2015.
21. V. Porpodas, R. C. Rocha, et al. Super-node SLP: Optimized vectorization for

code sequences containing operators and their inverse elements. In CGO, 2019.
22. V. Porpodas, R. C. O. Rocha, and L. F. W. Góes. VW-SLP: Auto-vectorization

with Adaptive Vector Width. In PACT, 2018.
23. V. Porpodas, R. C. O. Rocha, and L. F. W. Góes. Look-ahead SLP: Auto-

vectorization in the Presence of Commutative Operations. In CGO, 2018.
24. G. Ren, et al. Optimizing data permutations for SIMD devices. In PLDI, 2006.
25. I. Rosen, et al. Loop-aware SLP in GCC. In GCC Developers Summit, 2007.
26. J. Shin, M. Hall, and J. Chame. Superword-level parallelism in the presence of

control flow. In CGO, 2005.
27. M. Wolfe. Vector optimization vs. vectorization. In Supercomputing. Springer,

1988.
28. M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-

Wesley, 1995.
29. H. Zhou and J. Xue. A compiler approach for exploiting partial SIMD parallelism.

TACO, 2016.
30. H. Zhou and J. Xue. Exploiting mixed SIMD parallelism by reducing data reorga-

nization overhead. In CGO, 2016.

15

	PostSLP: Cross-Region Vectorization of Fully or Partially Vectorized Code

