LUCAS: Latency-adaptive Unified Cluster
Assignment and instruction Scheduling *

Vasileios Porpodas, and Marcelo Cintra '

School of Informatics, University of Edinburgh
{v.porpodas@, mc@staffmail.}ed.ac.uk

ABSTRACT

Clustered VLIW architectures are statically scheduled wide-issue
architectures that combine the advantages of wide-issue proces-
sors along with the power and frequency scalability of clustered
designs. Being statically scheduled, they require that the decision
of mapping instructions to clusters be done by the compiler. State-
of-the-art code generation for such architectures combines cluster-
assignment and instruction scheduling in a single unified pass. The
performance of the generated code, however, is very susceptible to
the inter-cluster communication latency. This is due to the nature of
the two clustering heuristics used. One is aggressive and works well
for low inter-cluster latencies, while the other is more conservative
and works well only for high latencies.

In this paper we propose LUCAS, a novel unified cluster-
assignment and instruction-scheduling algorithm that adapts to
the inter-cluster latency better than the existing state-of-the-art
schemes. LUCAS is a hybrid scheme that performs fine-grain
switching between the two state-of-the-art clustering heuristics,
leading to better scheduling than either of them. It generates better
performing code for a wide range of inter-cluster latency values.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; C.1.1 [Processor Architectures]: Single Data
Stream Architectures

General Terms Algorithms, Experimentation, Performance

Keywords Cluster Assignment, Instruction Scheduling, Clustered
VLIW

1. INTRODUCTION

Clustered designs were introduced as a solution to the poor scal-
ability of wide-issue processors. This is done by partitioning the
design into smaller sections called clusters. Within the cluster, data
transfers are fast and energy efficient, while across clusters there
is a performance and energy penalty. On the contrary, monolithic
(non-clustered) architectures have some bulky resources (such as
the register file) that are shared across many functional units and

*This work was supported in part by the EC under grant ERA 249059
(FP7).

T Marcelo Cintra is currently on sabbatical leave at Intel Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’13, June 20-21, 2013, Seattle, Washington, USA.

Copyright © 2013 ACM 978-1-4503-2085-6/13/06. .. $15.00

a. A high-level view of a generic Clustered VLIW Architecture
with 32 registers and 4 clusters (4 issue in total)

clusterl ricluster2
32 —165 |i:| r64 —195
RF " RF
| i |
| | [|
FU | E | FU |

b. A sample schedule on the clustered architecture

oy 132=..
8] [ICC: 131=132F
= rl=r0+r31

.=rl

Figure 1. A 4-cluster, 4-issue architecture with 32 registers per
cluster (a). An example instruction schedule on the architecture (b).

therefore they do not exploit the opportunity to improve perfor-
mance or to save energy whenever global communication is not
required. A clustered design, on the other hand, does exactly that
as its resources are partitioned into smaller, locally accessible
sections. Each cluster usually contains a portion of the register
file tightly connected to a small number of other resources (e.g.
functional units). In this way any local communication within the
cluster is fast and efficient while any inter-cluster communication
comes at extra cost, often higher than that of a monolithic design.
It is this partitioning of the global resources and their localization
within a cluster that gives the clustered design an advantage in both
energy and frequency scaling [26].

The clustering approach has been applied to both statically (e.g.,
[9, 23, 25]) and dynamically (e.g., [15, 22]) scheduled processors.
Statically scheduled processors are based on simpler, smaller and
more efficient hardware designs than their dynamically scheduled
counterparts. VLIW processors, which are both statically sched-
uled and wide-issue ILP processors, combine the hardware sim-
plicity and energy advantage of statically scheduled processors
with the performance of wide-ILP processors, thus operating at
a good energy-performance point. Since they are statically sched-
uled, VLIWs rely on the compiler to generate high performance
code. Compared to dynamically scheduled processors, VLIW pro-
cessors require that instruction scheduling be done in the compiler.

A clustered VLIW processor (as in Figure 1a) has an additional
performance and energy advantage compared to its non-clustered
counterpart due to the scalability of the design. In this case though,
the compiler has to perform yet another task, that of cluster assign-
ment, deciding the cluster where each instruction should be exe-
cuted at (as shown in the code example of Figure 1b).

1.1 Code Generation

Originally, cluster assignment was done just before instruction
scheduling, in a separate pass [8]. The clustering algorithm tra-
verses the data-flow graph and assigns the instructions to clusters
in a greedy manner. The cluster selected is the one suggested by
the clustering heuristic. The two state-of-the-art clustering heuris-
tics (Start-Cycle and Completion-Cycle) differ in their aggressive-
ness. The first one will eagerly spread instructions across clusters
as long as the one-way latency cost is covered, hoping for good per-
formance, whereas the latter will only do so if the round-trip cost is
covered. The clustering scheme has a major impact on performance
and is strongly affected by the inter-cluster latency.

More recent work has combined the instruction scheduling pass
with the cluster assignment pass in an attempt to remove some
phase-ordering issues between the two [14, 21]. This is done by
modifying the instruction scheduler so that upon scheduling an in-
struction, it also decides on the cluster where it should be assigned
to based on the value of the clustering heuristic.

1.2 Contributions

In this paper we identify a fundamental weakness of the existing
state-of-the-art heuristics for combined instruction scheduling and
cluster assignment. The code generated by these algorithms per-
forms well under very limited conditions. Depending on the heuris-
tic used, they work well under either: i) low inter-cluster latencies,
or ii) high instruction latencies. To make matters worse, the inter-
section point, where one heuristic overtakes the other, varies signif-
icantly and is benchmark specific.
In short in this paper:

1. We present a detailed comparison of the best state-of-the-art
clustering heuristics (built inside an instruction scheduler) on a
range of inter-cluster delays.

2. We propose a novel clustering heuristic that i) adapts to the
inter-cluster latency and performs best across a wide range of
inter-cluster latencies and ii) often outperforms both existing
heuristics

In the rest of the paper we start by describing some of the fun-
damental concepts involved (Section 2). Afterwards we motivate
the proposed work by identifying the weaknesses of the state-of-
the art (Section 3), then we discuss the proposed work in full detail
(Section 4) and the experimental setup (Section 5) used to get the
results shown in Section 6. Finally we present an overview of the
related work (Section 7) and we conclude in Section 8.

2. BACKGROUND

Our work is based on two fundamental concepts. The first one is the
clustering heuristics and the second one is instruction scheduling.

2.1 Clustering heuristics

In this section we present the state-of-the-art clustering heuristics
which are implemented in several algorithms.

Start-Cycle (SC): Existing combined cluster-assignment and
instruction scheduling schemes [14, 21] make use of the same clus-
tering heuristic, which according to [21] proves to be the highest
performing one when compared to other greedy heuristics. It is the
resource-constrained earliest schedule cycle heuristic, also known
as the Start-Cycle. In more detail, it returns the earliest cycle that
an instruction can be scheduled at on any given cluster, taking into
account not only the dependence constraints of the predecessors
but also the inter-cluster latency and the issue-slot occupancy (re-
source) constraint (Algorithm 1). An example that visualizes how
the heuristic works is in Figure 2b,c in red color. The two Start-
Cycle values (for (B,CL0) and (B,CL1)) show the value returned
by the heuristic for cluster 0 and 1 respectively.

CLO CL1

0] A
1B < {Start—Cycle (B, CL0) |
|
@ 2 B Start—Cycle (B, CLT)
3 Completion—Cycle (B, CLO)|
4
@ 4 <—{Completion—Cycle (B, CL1)
a. Partof a b. Latency constrained
Data Flow Graph
(DFG) CLO CLI

A

N B <—‘ Start—Cycle (B, CL1) ‘

B | <—{Start—Cycle (B, CLO) |
v Completion—Cycle (B, CLO)|
Completion—Cycle (B, CL1)|

EENVS I S)

c. Resource constrained

—= True dependence [_] Free issue slot Occupied issue slot

@ Instruction node [Occupied issue slot by some instruction

Figure 2. The internal workings of Start-Cycle and Completion-
Cycle clustering heuristics. Heuristic(N, CLx) signifies the value
of the Heuristic when node N is placed on cluster X.

The Start-Cycle heuristic spreads the instructions across the
clusters in an aggressive and greedy manner. Each and every in-
struction gets scheduled on the cluster where it will execute the
earliest. As shown in Section 3, this strategy proves to work best
on low inter-cluster communication latencies, but the performance
degradation on high latencies is unbounded.

Algorithm 1. Start-Cycle heuristic.

1 /+ Start-Cycle Heuristic #*/
2 start_cycle (insn, cluster)

3

4 1i=0

5 for pred in insn’s predecessors:

6 dst = Distance (pred.cluster, cluster)

7 latency_aware_sc = pred.cycle +pred.latency +dst
8 /# Increase cycle until we get a free resourcex/
9 cycle = latency_aware_sc

10 while reservation_table_not_free(cluster,cycle):
11 cycle ++

12 resource_and_latencyaware_sc = cycle

13 sc [i++] = resource_and_latency_aware_sc

14 return MAX of all sc[]

15 }

Completion-Cycle (CC): The problem of Start-Cycle’s un-
bounded performance degradation is addressed in other clustering
works (e.g., [8, 17]), which are based on the Completion-Cycle
heuristic. This is a conservative clustering heuristic that distributes
the instructions only if it is guaranteed that they will not cause a
slow-down at that scheduling point.

It works by calculating the Start-Cycle and adds to it the latency
of the instruction and the latency until this instruction’s data is
sent over to its earliest successor (Algorithm 2). Since the cluster
number of the successors is only known for the instructions just
before the end of a region, the cluster number of the successors is
zero for the majority of cases. This case is shown in Figure 2b,c in
green color.

Critical-Successor (CS): A more recently introduced cluster-
ing algorithm was presented in [28]. The clustering heuristic intro-
duced by it is based on the observation that when a sibling instruc-
tion node has been already assigned to a cluster, then it is highly
probable that there exists an immediate successor of it that is also a
highly critical immediate successor of the current instruction node.
In this case the clustering heuristic should select the cluster that
achieves the best start-cycle, not of the current instruction but of
the critical-successor node instead. To be more precise, the critical-

successor start-cycle is selected only if it can pinpoint a single clear
winner out of all clusters. The heuristic defaults to standard start-
cycle if the code does not meet any of these constraints. The CS
heuristic exhibits similar behavior to SC with respect to the in-
creasing inter-cluster delay, mostly due to the fact that it is built
upon the start-cycle heuristic. We will therefore focus on the other
two heuristics for the following sections.

All heuristics are greedy and are calculated once on a single
top-down walk of the DFG with no backtracking. Thus they cannot
guarantee a globally optimal solution.

Algorithm 2. Completion-Cycle heuristic.

1 /% Completion-Cycle Heuristic =/}
2 completion_cycle (insn, cluster)

{

i=0

start_c = start_cycle (insn, cluster)

for succ in insn’s successors:
dist = distance (succ.cluster, cluster)
cc [i++] = start_c + dist

return MIN of all cc[]

— OOV W

—_—

2.2 Instruction Scheduling

Instruction scheduling is traditionally done by a list scheduler. The
list scheduling algorithm works as shown in Algorithm 3. Its input
is a Data Dependence Graph (DDG) and its output is the instruction
schedule. In short it follows the following steps:

1. Walk the dependence graph and prioritize the nodes (usually
based on their height from the bottom of the DDG) (Algorithm 3
line 4).

2. While there are unscheduled nodes, form a list of ready
instructions (instructions with scheduled predecessors or with no
predecessors at all) (Algorithm 3 lines 6 - 7).

3. Sort the ready list based on the priority of each instruction
(Algorithm 3 line 8).

4. Start from the instruction with the highest priority and try
to issue it on the current cycle (Algorithm 3 lines 9-11). If this is
not possible then skip it (line 13) and try the next instruction in the
ready list. In any case remove the current instruction from the ready
list (line 14).

5. Once tried all the instructions in the ready list have been
considered then increase the current cycle by 1 (Algorithm 3 line
15).

Algorithm 3. Simplified List Scheduling.

1 /% List Scheduling: Input DDG, Output: Schedule */
2 list_schedule (ddg)

3

4 walk down the ddg and prioritize the nodes
5 cycle =0

6 while (exist unscheduled nodes):

7 ready_list = list of ready nodes

8 sort ready_list based on priority

9 for node in prioritized ready_list:

10 if (can issue node.instruction on cycle):
11 Issue (node.instr, cycle)

12 else

13 Skip node

14 Remove node from ready_list

15 cycle ++

16 }

3. MOTIVATION

The major weakness of the state-of-the-art cluster-assignment and
instruction-scheduling algorithms is that their clustering heuris-

SC/CS

Intersection point

cycles

I

/TLTCAS

inter—cluster latency

Figure 3. Qualitative performance comparison of clustering
heuristics under increasing inter-cluster latency: Start-Cycle (SC),
Critical-Successor (CS), Completion-Cycle (CC) and the proposed
heuristic used in LUCAS.

tics perform well on a limited range of inter-cluster communica-
tion latencies. Figure 3 points out this fact. The Start-Cycle (SC)
(and Critical-Successor (CS)) heuristics perform well only on low-
latency configurations. The Completion-Cycle (CC), on the other
hand performs well only on high-latency configurations. Moreover
the intersection point is highly specific to the benchmark and varies
unpredictably.

The proposed scheme (LUCAS) addresses the shortcomings
of both heuristics by adapting to the inter-cluster latency. LU-
CAS switches between the aggressive (SC) and conservative (CC)
heuristic on a per-instruction basis. As shown in Figure 3 the goal
of the proposed approach is to provide the best performance across
the whole range of inter-cluster latencies.

3.1 Clustering Heuristics

The reason why the state-of-the-art heuristics perform in general
as in Figure 3 and why our heuristic performs the way it does, can
be explained by the motivating examples of Figures 4 and 5. The
LUCAS heuristic uses two sub-heuristics: i) the cycle-congestion
(Figure 4) and ii) the instruction mobility (Figure 5), to guide
the decision on when to use the start-cycle or the completion-
cycle heuristic. This will be explained in more detail later on. The
examples of Figures 4 and 5 show the schedules acquired after
scheduling the nodes of the Data Flow Graph (DFG) (Figure 4a and
5a) using the clustering heuristics (vertical axis) for inter-cluster
latencies of 1 to 3 cycles (horizontal axis).

The Start-Cycle heuristic (Figures 4 and 5 b-d) performs well
on low latencies but the schedule length increases almost linearly
to the inter-cluster latency. This is because the heuristic is very
aggressive at dispersing the instructions across distant clusters.

On the contrary, the Completion-Cycle heuristic (in both Fig-
ures 4 and 5 e-g) performs best under high inter-cluster communi-
cation latencies. The schedule length remains unchanged no matter
the inter-cluster latency. The reason for this is that an instruction
will only be scheduled on a distant cluster if its descendants are not
slowed down. This conservative policy bounds the schedule length
for high latencies but proves not as effective for low latencies.

LUCAS adjusts better to the inter-cluster latency. We show how
it does so by demonstrating how each of the sub-heuristics works
in each example (Figures 4 and 5). The Cycle-Congestion sub-
heuristic (Figure 4) measures the congestion on each scheduling
cycle. If there are too many ready instructions to fit in a single clus-
ter, then it chooses to follow the aggressive Start-Cycle heuristic.
This happens in cycles 0 and 1 in Figure 4.h and i (latency 1 and
2). On later cycles however, there is no congestion and therefore
instruction E’ is scheduled based on the conservative Completion-
Cycle heuristic.

The instruction Mobility sub-heuristic is shown in Figure 5. The
concept is that if an instruction has a high enough mobility, then its
slack is high and thus there is little chance that it can degrade the
schedule if assigned to a distant cluster (the mobility is calculated
as ALAP-ASAP as in [16]). Therefore high-mobility instructions
are scheduled with the Start-Cycle heuristic. The mobility numbers

LUCAS
Cycle—Congestion Inter—Cluster Communication Latency
Latency: 1c Latency: 2¢ Latency: 3¢
m CLO CL1 CLO CL1 CLO CL1
g o o[afc] o[a]lc
> 1[B|D]| 1[B]D] 1[B|D
@ @ 9 2] 2 2]
g sl 3 E
< 4| E 40
® ® |5 sl
b. c. d.
@ > CLO CL1 CLO CL1 CLO CL1
5 o[a o[A o[A
a. Data Flow Graph Emilc e ¢
(DFG) w2 2| B 2[B
E> 3| D 3| D 3| D
- True dependence| [=© 4| E 4 E 4 E
® Instruction node 8 £
. e . g
Free issue slot
[x]Occupied slot > CLO CLI CLO CLI CLO CLI
S[Aalc] OM[A]c] o[A
wEd|[B|p| @M[B|D]| 1[C
SB2 | 2 2B |
=) KZD 3LE 3 3D
=5 4[E 4[E
O 0: congestion 0: gestion No congestion
1: congestion 1: congestion
2: NO cong. 2: NO cong.
3: NO cong 3: NO cong .
h. i. J-

Figure 4. Motivating example 1. Schedules for the instructions in
the Data Flow Graph (DFG) (a) on a 2-cluster 2-issue clustered
architecture, for the Start-Cycle, Completion-Cycle and LUCAS-
Cycle-Congestion clustering heuristics. The inter-cluster delay
ranges from 1 to 3 cycles.

are shown in the DFG of Figure 5 on the left side of each instruc-
tion. Instruction *C” has mobility 1 which is higher than the thresh-
old for Latency 1. Therefore in that case *C’ is scheduled in Cluster
1, as dictated by the Start-Cycle heuristic.

As shown in the motivating examples, LUCAS is capable of
adapting to the best clustering heuristic, for the whole range of
inter-cluster communication latencies. The detailed description of
the LUCAS algorithm and the sub-heuristics used is presented later
in Section 4.

3.2 Scheduling

While both UAS and CARS [14, 21] make use of a list scheduler,
they have embedded the clustering decision inside the instruction
scheduler in a different way.

CARS ! always honors the clustering decision and schedules
only on the cluster chosen by it (see Figure 6a). The clustering
heuristic tags each cluster with a score and next the cluster with
the best score wins (Figure 6.a.2 BEST CLUSTER).

On the contrary UAS [21] is more aggressive. It tries to honor
the clustering decision only at the first attempt, but if it fails to issue
the instruction on the specified cluster, it will try other clusters as
well (Figure 6.b). Therefore the cluster with the best score does
not always win (Figure 6.b.3). This is an aggressive technique that
might work on low inter-cluster latencies but it performs poorly
on higher latencies. As shown in Section 6, this method has no
major impact on performance even for low inter-cluster latencies
when combined with the Start-Cycle heuristic of Algorithm 1 as its
aggressiveness is overshadowed by that of the Start-Cycle heuristic.

LUCAS aims at performing best on the whole range of inter-
cluster latencies. Therefore it honors the clustering decision made
by the heuristic (similarly to CARS) as in Figure 6a.

I'CARS also performs register allocation, which is not shown.

LUCAS Inter—Cluster Communication Latency
MOblllty Latency: 1c Latency: 2¢ Latency: 3¢
m CLO CL1 CLO CL1 CLO CL1
g0 0 o[a]c
> 1B | 1[B| 1| B
0 1 9 2[o]] 2[] 2
@ © | g A
< 4| D
0 & b . d
0 . CLO CL1 CLO CL1 CLO CL1
(D Z o 0 o[A
a. Data Flow Graph = E 1 “ 1 “ 1| B
Coinll L S SR
—> True dependence %] b
® Instruction node | ©
[IFree issue slot © e f. g
[X]Occupied slot
CLO CL1 CLO CL1 CLO CL1
o[alCO] o o[A
281[B] | 1[B] 1[c
uvgz2[p]] 2 2[B
=8 3/ D] 30D
S MOB(C) > Thr. MOB(C)<Thr. MOB(C) < Thr.
h. i J-

Figure 5. Motivating example 2. Schedules for the instructions in
the Data Flow Graph (DFG) (a) on a 2-cluster 2-issue clustered
architecture, for the Start-Cycle, Completion-Cycle and LUCAS-
Mobility clustering heuristics. The inter-cluster delay ranges from
1 to 3 cycles. Each node in the DFG is tagged with its mobility
number.

1. Pop highest priority 2 3
instruction il 3
INSTR - Yes 4a.
eadv Li _C]ustgr{ng BEST Can Issue?|—= Issue INSTR on
Heuristic |CLUSTER BEST

O dér?d/ﬁeady List
I © D No CLUSTER

High Low

4p. Try Next Instructi
* in Ready List

a. Scheduler that respects the clustering decision (CARS-like, LUCAS)

1. Pop highest priority 2 3. - 4 Yes Sa.
instruction. - Cl‘ - List of CLUSTERS | Can Issue? —= Issue INSTR
=== |Clustering h 1V o Y on clX
red Ready List |Heuristic cly clz [

5b.Try Next Clustér

5¢. Try Next Instruction
in Ready List

b. Aggressive scheduler that ignores the clustering decision (UAS)

Figure 6. The two variants of embedding the clustering heuristic
into the instruction scheduler. The numbers denote the order of
execution of each step.

4. LUCAS

The proposed Latency-aware Unified Cluster-Assignment and in-
struction Scheduling algorithm addresses the shortcomings of the
existing algorithms (discussed in Section 3).

LUCAS is a list-scheduling-based algorithm that performs clus-
ter assignment and instruction scheduling simultaneously. The nov-
elty lies in the clustering heuristic. The algorithm is listed in Algo-
rithm 4. A high-level view of the structure of the algorithm is shown
in Figure 6a.

In detail, LUCAS performs the following actions:

1. It assigns a priority number to all instruction nodes of the DFG
(Algorithm 4 line 6) using a priority function (for example the
instruction height in the DFG).

2. It updates the ready list with instructions ready to be issued on
the current cycle (line 9).

3. It sorts the ready list based on the node priorities of step 1 (line
10).

4. Before scheduling the instruction under consideration, the al-
gorithm determines the best_cl (best cluster) by evaluating
the heuristic for each candidate cluster and choosing the best
among those (Algorithm 4 line 23). The “get_best_cluster()”
function incorporates the adaptive heuristic.

5. Then the algorithm tries to schedule the instruction only if it
meets the Start-Cycle constraint (which includes both depen-
dence and clustering-related structural constraints) (Algorithm
4 line 13).

6. If all processor structural constraints allow scheduling the in-
struction at the current cycle on best_cl (Algorithm 4 line 14),
then we can proceed.

7. If the required Inter-Cluster Copies (ICCs) can be emitted on
the inter-cluster network (that is if the network is not fully
occupied) (line 15), then it emits the ICCs and register renames
the instructions that use the register brought in by the ICCs (line
16) and it finally cluster-assigns and issues the instruction on
best_cl (lines 17,18).

8. If the instruction has been placed on a distant cluster, then up-
date its mobility metric (decrement it by the inter-cluster delay
(ICD)) to reflect this change (line 19). The intuition behind this
is that the ICD consumes some of the ability of the instruction
to move freely.

9. Repeat steps 5-9, by selecting the highest priority node until the
ready list is empty (line 11).

10. Finally repeat steps 2-10 until all instructions are scheduled

Algorithm 4. LUCAS: Latency-adaptive Clustering and Schedul-

ing.

1 /+ LUCAS Scheduling and clustering.
2 Input: DFG
3 Output: Clustered Schedule x/
4 lucas_schedule_and_cluster (DFG)
5 ¢
6 walk down the DFG and prioritize the nodes
7 cycle =0
8 while (exist unscheduled nodes)
Fill in ready_list
sort ready_list based on priority
for node in prioritized ready_list
best_cl = get_best_cluster(node.instr, cycle)
if (start_cycle (node.instr, cluster)<=cycle)
if (can issue node.instr on cycle)
if (can schedule Inter-Cluster Copies)
Emit ICCs and reg. rename node.instr
node.cluster = best_cl
Issue (node.instr, cycle, best_cl)
Update MOBILITY (node.instr) if it gets
—data from a distant cluster

el e e el
OO N B WN— OO

20 cycle ++

21 }

22

23 get_best_cluster (insn, cycle)

24 |

25 for cluster in all clusters

26 heuristic[cluster] = lucas(insn,cluster)

27 /% Find best cluster: MIN_CL =/
28 min_cl =0
29 for cli in clusters

30 if (heuristic[cli] < heuristic[min_cl])
31 min_cl = cli

32 return min_cl

33}

34

35 /+ Return the score of CLUSTER =/
36 lucas (insn, cluster)

37 {
LAlgorhhn14-Hne 8). 38 high_congestion = (#Ready-instr. > IWPC X ICD)
39 high_mobility = (MOBILITY(insn) > IWPCX2X (ICD-1))
The LUCAS heuristic is a hybrid Start-Cycle / Completion- 40 if (high_congestion OR high_mobility)
Cycle heuristic. It decides per instruction which of the two to use 3; lre‘:“r“ start_cycle (insn, cluster)
. . else
based on two metrics: 43 return completion_cycle (insn, cluster)
44

1. The cycle congestion (Algorithm 4 line 38). This is a binary
metric. [t returns true if there are too many instructions to sched-
ule on the current cycle. That is if the number of instructions
that are ready on the current cycle are greater than the conges-
tion threshold. The threshold reflects both the issue resources cluster | |cluster
of a cluster and the inter-cluster penalty. It is computed as 00— 1
the product: Issue-Width Per Cluster (IWPC) times the Inter- I I
Cluster Delay (ICD). luster clustor

2. The mobility of the instruction (Algorithm 4 line 39). The 3 —
mobility is calculated as ALAP-ASAP values in the Data-Flow-
Graph [16]. A high mobility value suggests that there is enough
slack in the schedule for the instruction to be executed later
with no guaranteed side-effects in the schedule. The mobility
threshold corresponds to the inter-cluster round-trip time.

Figure 7. The fully-connected point-to-point interconnect.

e Finally, the algorithm does a linear search over all clusters to
find the cluster with the minimum heuristic value (line 29) (as
shown in Figure 6.a.2). Once found, the cluster that corresponds
to the minimum value of the heuristic is returned as the best
cluster (line 32).

The actual algorithm for the lucas heuristic is listed in Algo-
rithm 4 in get_best_cluster() function. It works as follows:

e At first each candidate cluster is tagged with the heuristic value
(Algorithm 4 line 25). This uses the lucas() function (Algorithm
4 line 36).

e The LUCAS heuristic checks the two metrics (cycle conges-
tion and instruction mobility sub-heuristics) (lines 38-39) for
the instruction to be scheduled and decides on the heuristic to
be used for the clustering decision (line 40). This is the core
of the LUCAS heuristic. The metrics decide whether the ag-
gressive Start-Cycle heuristic (line 41) or the more conservative
Completion-Cycle heuristic is used (line 43).

5. EXPERIMENTAL SETUP
5.1 Architecture

The target architecture is an IA64 (Itanium2) ISA based statically
scheduled clustered VLIW architecture. The architecture is config-
ured to have 4 clusters with an issue-width of 4 or 8 (1 or 2 issue
per cluster).

Processor: IA64 based clustered VLIW
Issue Width: 4or8
Clusters: 4
Instruction Latencies: Same as Itanium2 [19]
Register File: (32GP, 32FL, 16PR) per cluster
Inter-Cluster Delay: 1 -4 cycles
Inter-Cluster Bus Bandwidth: 0o
Branch Prediction: Perfect

Cache: Levels 3 (same as Itanium?2 [19])
Levels : L1 L2 L3 Main Mem.
Size (Bytes): 16K 256K 3M 00
Block size (Bytes): 64 128 128 -
Associativity: 4-Way | 8-way 12-way | -
Latency (cycles): 1 5 12 150

Table 1. Processor configuration.

Scheduling
LUCAS
Register

Allocation

z
N

Figure 8. Overview of the GCC compilation pipeline.

The inter-cluster communication bandwidth is infinite > , mean-
ing that there is no limit in the count of the simultaneous inter-
cluster communications. Thus our results have no noise from any
inter-cluster bandwidth effects.

The clusters communicate through a fully-connected point-to-
point interconnect as shown in Figure 7. All clusters communicate
with each other with equal latencies. The latency is adjustable and
in our experiments it ranges from 1 to 4 cycles.

The architecture configuration is summarized in Table 1.

5.2 Compiler

We implemented both UAS [21] and the proposed (LUCAS) uni-
fied clustering and scheduling algorithms along with all cluster-
ing heuristics (see below) in the instruction scheduling pass of
GCC-4.5.0 [1] cross compiler with Itanium ([24]) as the target ISA
(IA64). As shown in Figure 8 the instruction scheduler (with the
clustering built-in) runs before register allocation.

The implementation of the scheduler enables us to easily swap
the clustering heuristics while the rest of the instruction schedul-
ing pass remains unchanged. The heuristic is one of the follow-
ing: 1) Start-Cycle ([21]), ii) Completion-Cycle ([8]), iii) Critical-
Successor ([28]) or iv) LUCAS (the proposed one).

5.3 Evaluation

We evaluated LUCAS on the 4-cluster architecture described in
Section 5.1 configured as a 4-issue and an 8-issue machine. We
compare the LUCAS heuristic against the state-of-the-art Start-
Cycle (SC) and Completion-Cycle (CC) as well as the recently pro-
posed Critical-Successor (CS) clustering heuristic. In addition we
compared all these against an accurate implementation of the UAS
algorithm. The algorithms and heuristics compared are summarized
in Table.2.

We evaluated LUCAS against the existing state-of-the-art heuris-
tics on 6 of the Mediabench II video [11] benchmarks. All bench-
marks were compiled with -O2 optimizations enabled. Each bench-
mark is compiled several times, once with each clustering heuristic
enabled, and each binary is then executed on our modified ski sim-
ulator [2], configured as discussed in Section 5.1.

2 This means that the condition in Algorithm 4 line 15 is always true.

Algorithm Heuristic
Obeys Start Completion Critical
Heuristic Cycle Cycle Successor
UAS X VA X X
SC vV vV X X
CcC vV X vV X
cs v v X Vv
LUCAS Vv +/(Hybrid) +/(Hybrid) X

Table 2. Evaluated schemes.

6. RESULTS AND ANALYSIS

We have two kind of results: i) the performance results (normalized
to the Start-Cycle for delay 1), shown in Figures 9 and 10, which
show that LUCAS meets its performance goals and ii) the instruc-
tion distribution measurements (Figures 11 and 12) that provide im-
portant insights into the workings of the heuristics. Both of these re-
sults show two LUCAS heuristics: LUCAS-C which is based only
on the Congestion sub-heuristic and LUCAS-C-M which is the full
version with both Congestion and Mobility enabled. This is a use-
ful breakdown that lets us better understand the effects of each part
individually.

6.1 Performance

The first thing that stands out is the non-scalability of the UAS[21],
the Start-Cycle (SC) ([8], Algorithm 1) and the Critical-Successor
(CS) ([28]) heuristics. The performance degradation increases al-
most linearly with the delay as seen in Figure 9. This is caused
by the aggressiveness of the Start-Cycle heuristic, which spreads
instructions on distant clusters, disregarding the cost of communi-
cating the results back after they have been computed. The Critical-
Successor heuristic is partly based on the Start-Cycle, which con-
tributes to its non-scalability.

The performance of UAS is very close to that of the Start-Cycle
heuristic. As already explained in Section 3.2, the UAS scheduler
uses a variation of the Start-Cycle clustering heuristic (which in
[21] it is referred to as CWP), but the scheduling algorithm fol-
lows a different approach in selecting a cluster. UAS may ignore
the decision of the clustering heuristic if it cannot schedule on the
chosen cluster due to resource constraints (see Figure 6a). This is
a greedy gamble as the scheduler tries to assign an instruction to
any cluster possible, even if this means ignoring the primary deci-
sion of the clustering heuristic. This does not happen in the unified
clustering and scheduling algorithm that we propose (Figure 6.b).
In our approach, the primary decision of the clustering heuristic is
honored by the scheduler. The CC, SC, CS and LUCAS heuristics
follow this second approach. As shown in the results, UAS per-
forms on average very similarly to the Start-Cycle heuristic of our
algorithm. The reason is that the Start-Cycle heuristic is aggressive
enough and usually overshadows the aggressiveness of the UAS
algorithm.

The Completion-Cycle heuristic (Algorithm 2) keeps perfor-
mance at a reasonable level. The reason is that the heuristic is
conservative. It only issues an instruction on a distant cluster if
it can prove that it is beneficial even in case it needs to send the
data back. Therefore if the inter-cluster latency is high, usually
the round-trip latency is too expensive and the Completion-Cycle
heuristic will keep the instructions on the same cluster. This how-
ever proves to be inadequate for low inter-cluster latencies (e.g.
Figure 9 mpeg2dec). In the worst case the Start-Cycle heuristic out-
performs the Completion-Cycle by over 40% (Figure 9 mpeg2dec).

The measurements of Figure 9 show that while the Completion-
Cycle heuristic is better at high inter-cluster delays (e.g. Figure 9
djpeg latency 2 or more), the Start-Cycle heuristic usually works
best at low inter-cluster delays. That is when being aggressive
at spreading the instructions across clusters as much as possible
proves a better choice than being conservative. This is the main
motivation behind LUCAS. If both of these approaches are com-

cjpeg (4-issue, 4-cluster)

djpeg (4-issue, 4-cluster)

mpeg2enc (4-issue, 4-cluster)

2.40 2.80 2.00
% 2.20 — g 2.60 3
S 200 — &G m S 240 g 180
3 < CS = & 220 3 1.60
- 1.80 — LUCAS-C mm - 2.00 -
£ 160 | LUCASCM = 2180 S 140
'S 1.40 s 1.60 T
E £ 1.40 E 1.20
s 1.20 S 120 5}
Z 1.00 Z 1700 Z 1.00

di d2 d3 d4 d1 d3 d4 di d2 d3 d4
Inter-Cluster-Delay Inter-Cluster-Delay Inter-Cluster-Delay
mpeg2dec (4-issue, 4-cluster) h263enc (4-issue, 4-cluster) h263dec (4-issue, 4-cluster)

2.40 1.80 2.40
8 220 8 8 220
S 200 g 160 S 2.00
- 1.80 S 1.40 - 1.80
N 1.60 S N 1.60
g 1.40 g 120 g 1.40
s 1.20 S s 1.20
Z 1.00 Z 1.00 Z 1.00

di d2 d3 d4 d1 d d3 d4 di d2 d3 d4

Inter-Cluster-Delay

Inter-Cluster-Delay

Inter-Cluster-Delay

Figure 9. Cycles of the 4-issue,4-cluster configuration for inter-cluster delay 1 to 4, normalized to Start-Cycle (SC), delay 1.

cjpeg (8-issue, 4-cluster)

djpeg (8-issue, 4-cluster)

mpeg2enc (8-issue, 4-cluster)

UAs = 2.20 2.00
8 200 — SC = 8 2.00 3 180
o CC mm o o
2 1.80 — S = 2 1.80 & 160
g 160 A B 160 B 0
E’ 1.40 g 1.40 ‘_é ’
E £ E 1.20
5 1.20 5 1.20 5
Z 1.00 Z 1.00 Z 1.00
d1 d2 d3 d4 d1 d3 d4 d1 d2 d3 d4
Inter-Cluster-Delay Inter-Cluster-Delay Inter-Cluster-Delay
mpeg2dec (8-issue, 4-cluster) h263enc (8-issue, 4-cluster) h263dec (8-issue, 4-cluster)
2.40 1.40 2.20
8 220 3 8 2.00
o o o
g 2,00 & & 1.80
- 1.80 < 1.20 T 1.60
8160 B 5 140
© © © .
g 1.40 g £
5 1.20 5 1.00 5 120
Z 100 z Z 100
d1 d2 d3 d4 d1 d3 d4 d1 d2 d3 d4

Inter-Cluster-Delay

Inter-Cluster-Delay

Inter-Cluster-Delay

Figure 10. Cycles of the 8-issue,4-cluster configuration for inter-cluster delay 1 to 4, normalized to Start-Cycle (SC), delay 1.

bined together, then we can get a clustering heuristic that performs
well across all inter-cluster delays. This assumption is confirmed
by the LUCAS results of Figure 9.

The intersection point where the Start-Cycle heuristic over-
takes the Completion-Cycle heuristic is not fixed. It is can be be-
tween delay 1 and 2 (Figure 9 djpeg) or between delay 2 and 3 (e.g.
Figure 9 cjpeg). Therefore selecting the right heuristic cannot be
based on some fixed magic number. LUCAS performs an effective
switching between Start-Cycle and Completion-Cycle with the help
of two metrics: the cycle congestion and the instruction mobility.

LUCAS does not only adapt to the best heuristic, but it quite
often outperforms both heuristics (e.g. Figure 9 mpeg2dec d3,d4,
h263enc d2,d3,d4 and Figure 10 mpeg2dec d1, h263dec d1). This
is intuitive because LUCAS performs a fine-grain switching be-
tween the Start-Cycle and Completion-Cycle heuristic at the in-
struction level. This can select the best heuristic at a fine granular-

ity, when it is needed, which is better in the long run than selecting
one of the two for the duration of the whole program.

The two sub-heuristics that form LUCAS, Congestion (C) and
Mobility (M), do work together and when combined (logical OR)
usually lead to better overall performance. The gains from applying
the Mobility heuristic on top of the Congestion one are up to 9%
(Figure 9 mpeg2enc d3). In a few cases however, performance
decreases (3.5% in the worst case). The reason behind the behavior
is that under high inter-cluster delays, any further aggressiveness
(introduced by the logical OR-ing of the heuristics), is usually for
the worse.

Overall, in most cases LUCAS performs very closely to the
best heuristic or better than it (e.g. cjpeg). There are some outliers
though. The mpeg2enc stands out from the rest, as for both the 4-
issue and 8-issue setups LUCAS cannot keep up with the best for
high inter-cluster delays, although it is still much better than UAS,
SC and CS. In case of the 4-issue machine, the differences are great,

clomm cli{ =m c2= cl3 mm

Instructions per cluster for cjpeg (4-issue, 4-cluster)

oeo U BT FUNN AN URAR AAA
0.80 |

0.60

1234 1234 1234 1234 1234 12
UAS SC cc cs LUCAS-C LUCAS-
Scheduling heuristic

0.40

0.20

Instructions per cluster

0.00

clomm cli =m c2= cl3 mm

Instructions per cluster for mpeg2enc (4-issue, 4-cluster)

FLBEL
0.80

8
o 0.
=
3 0.60
%
S 040
°©
2
% 0.20
£
0.00
1234 1234 1234 1234 1234 234
UAS sC cC cs LUCAS-C LUC S-C-M

Scheduling heuristic

clomm cli =m c2= cl3 mm

Instructions per cluster for h263enc (4-issue, 4-cluster)

oeo VAR RN AR SWER e
0.80

8 |

(2] .

=

& 0.60

Q

.S 0.40

2

@ 0.20

0.00

1234 1234 1234 1234 1234 234
UAS SC cC Cs LUCAS-C LUC S-C-M

Scheduling heuristic

clomm cli=m cl2= cl3 mm

Instructions per cluster for djpeg (4-issue, 4-cluster)

veo R TR NN AN RRAH O0R
0.80 |

1234 1234 1234 1234 1234 1 4
UAS sC cc cs LUCAS-C LUCAS-C-M
Scheduling heuristic

0.40 |

0.20

Instructions per cluster

0.00

comm climm c2=a cl3 mm

Instructions per cluster for mpeg2dec (4-issue, 4-cluster)

1.00

FTTRH
T
o I |

0.20

Instructions per cluster

0.00
1234 1234 1234 1234 1234 1 4
UAS sC cC Ccs LUCAS-C LUCAS-C-M
Scheduling heuristic

comm climm c2=3 cl3 mm

Instructions per cluster for h263dec (4-issue, 4-cluster)
1.01

0.80
0.60
0.40

0.20

Instructions per cluster

0.00
1234 1234 1234 1234 1234 1 4
UAS sC cC Ccs LUCAS-C LUCAS-C-M
Scheduling heuristic

Figure 11. Distribution of instructions on each cluster, for all clustering heuristics and for delays ranging from 1 to 4. This is for the 4-issue

4-cluster machine.

clomm cli{ =m c2= cl3 mm

Instructions per cluster for mpeg2enc (8-issue, 4-cluster)

il | (| I |

0.40

1.00

0.20

Instructions per cluster

0.00

1234 1234 1234 1234 1234 1234

UAS SC cc cs
Scheduling heuristic

LUCAS-C LUCAS-C-M

clomm cli=m cl2= cl3 mm

Instructions per cluster for mpeg2dec (8-issue, 4-cluster)

il | (| mAE

0.40

1.00

0.20

Instructions per cluster

0.00

1234 1234 1234 1234 1234 1 4
UAS sC cc cs LUCAS-C LUCAS-C-M
Scheduling heuristic

Figure 12. Distribution of instructions on each cluster, for all clustering heuristics and for delay ranging from 1 to 4. This is for the 8-issue

4-cluster machine and just for the mpeg2 benchmarks.

however on the 8-issue machine, where the performance penalties
get amplified, this effect is more evident. The mpeg2enc, 8-issue
case is a special case as it is the only one that is strongly biased
against the Start-Cycle heuristic even for delay 1. Therefore any
attempt to spread the instructions to distant clusters will lead to a
slowdown. In most other cases if LUCAS performs worse than the
best performing heuristic it performs marginally worse (e.g. Figure
10 djpeg d2.,d3).

6.2 Instruction Distribution

To provide more insights into the internals all clustering heuris-
tics, including LUCAS, we show the distribution of the program
instructions across clusters for all heuristics and for both machine
types (Figures 11 and 12). Each of the stacked bar shows the break-
down of the instructions on each cluster (each cluster is represented
by a color). Each heuristic corresponds to 4 stacked bars, one for
each inter-cluster delay (ranging from 1 to 4). We observe that:

1. First of all, some of the graphs look strikingly similar. For
example the breakdowns for Figure 11 cjpeg and djpeg look
very similar. This is due to the fact that these benchmarks share
a lot of common source files. Since the instruction counts are
statically computed, the differences between the benchmarks
are minimized.

2. On the 4-issue machine (Figure 11), about 60% of the code
is executed on the first cluster, and the rest of it is spread
across the rest for inter-cluster delay of 1. The further away
from cluster 0, the fewer the instructions. The second cluster
(cl1) usually contains about 25% of the instructions, the third
cluster (cl2) about 10% and the last one contains about 5%.
This behavior is intuitive as any inter-cluster communication
has an extra overhead, forcing the scheduler to be reluctant on
spreading the instructions across clusters, doing so only when
absolutely necessary. This effect gets amplified on the 8-issue
machine (Figure 12), where there is usually little need for extra
issue slots on other clusters. This is why, on this configuration
there are even more instructions (> 80% in some cases) in
cluster 0 and fewer in the rest. It is worth noting that the first
cluster (cl0) is of no particular significance as the architecture
is a symmetric one, as shown in Figure 7.

3. The fundamental difference of the heuristics can be observed
as we increase the inter-cluster delay. The aggressive heuris-
tics (UAS, SC and CS) do not seem to adjust to the increase
in the inter-cluster delay. Instead of being more conservative
in scheduling across clusters, they seem to become even more
aggressive (the instructions on cl0 decrease as the delay in-
creases). On the other hand the conservative CC heuristic be-
haves in the opposite way. As the inter-cluster delay increases,
it tries to keep more instructions within cl0. The LUCAS heuris-
tic (LUCAS-C-M in particular), bridges the gap between these
two opposite strategies. For small inter-cluster delays it behaves
almost like the aggressive heuristics, but as the inter-cluster de-
lay increases, it behaves as the conservative one.

6.3 Algorithmic Complexity

This section calculates the algorithmic complexity of LUCAS. We
do that by examining the algorithm (Algorithms 4, 1 and 2). Let’s
consider an input DFG of N nodes. The LUCAS Scheduling algo-
rithm has 2 visible levels of nested loops (the 3rd is in the Start-
Cycle calculation):

1. The outer loop iterates until all instructions in the DFG are
scheduled. In each iteration a single cycle gets scheduled. If on
average S (with S < issuewidth) instructions get scheduled,
then this loop iterates N/s times. On each iteration of this loop,
the ready list is sorted using quick sort. Given an average ready

list size of R, this usually costs R x logR and R? in the worst
case.

2. The middle loop iterates until all instructions in the ready list
are examined for scheduling. Therefore it iterates R times.
The best cluster is found by get_best_cluster(). This iterates
once over all clusters and sets the Start-Cycles. The Start-Cycle
heuristic iterates over all flow predecessors of the instruction
to be scheduled and gets calculated once for each cluster. If
P is the number of flow predecessors and C' is the number of
clusters, then this costs RC'P.

The complexity of LUCAS Scheduling is computed as:
e N/S x R X (logR + CP) in the usual case
e N/S x R x (R+ CP) in the worst case

In all practical cases all S, R, P are small constants with typical
values: S < 3, R < 10, P < 10. This is an O(N) complexity. The
worst-case scenario involves S = 1 and R = N, P = N which
leads to complexity O(N?).

UAS has a similar 3-nested loop structure and exhibits similar
complexity. For all practical cases, the UAS is O(NN) and in the
worst-case it is O(N?). Therefore both schedulers have similar
complexity.

7. RELATED WORK

This section discusses the previous work on cluster assignment
and instruction scheduling for clustered VLIW architectures, that
is closely related to our work.

7.1 Combined Cluster Assignment & Instruction Scheduling

The first work that proposes a combined instruction scheduling and
clustering pass is Unified Assignment and Scheduling (UAS) [21].
The scheduling algorithm is a modified list scheduler. In this work
cluster assignment is aggressive in two ways:

i) This work uses the aggressive Start-Cycle (SC) heuristic for
the clustering part (in the terminology of [8]) (or CWP in the
terminology of [21]) which is shown to be the best performing one
over several others on the architecture that was evaluated. The inter-
cluster delay is fixed to 1 cycle, which explains why the Start-Cycle
heuristic was found to be the best performing of the heuristics tried
out. In our work we show that the Start-Cycle causes an unbounded
performance degradation as the inter-cluster latency is increased.

ii) The scheduling algorithm is such that will try to schedule an
instruction on the current cycle even if this cluster is not the first
choice of the clustering heuristic.

Compared to UAS, LUCAS will always obey the decision of
the clustering heuristic. In LUCAS, the heuristic is a hybrid one
that switches between the aggressive Start-Cycle and the more
conservative Completion-Cycle (CC).

CARS ([14]) is a combined scheduling, clustering, and register
allocation code generation framework based on list-scheduling.
Similarly to UAS, the Start-Cycle is the heuristic that steers the
clustering decisions.

Recently, a new clustering heuristic was introduced by [28].
This differs from the previously mentioned ones in that, under cer-
tain conditions, the clustering decision is based on earliest schedule
cycle of the most critical successor of the current instruction. Sim-
ilarly to the Start-Cycle (SC) and Completion-Cycle (CC) heuris-
tics, it is not meant to operate across a wide range of inter-cluster
delays. This heuristic quite often defaults to the Start-Cycle, which
is why its performance is also unbounded as the inter-cluster de-
lay increases. In our evaluation we name this heuristic as Critical-
Successor (CS).

Finally there are several combined loop-scheduling and cluster-
ing algorithms [3, 6, 27]. These are based on the software-pipeline
scheduling technique of modulo-scheduling. These techniques are

only applicable on innermost loops under very specific and strict
conditions.

7.2 Clustering on a separate pass

Pioneering work on code generation for clustered architectures
was introduced in [8], with the Bottom-Up-Greedy (BUG) cluster-
assignment algorithm. This work differs from later cluster assign-
ment algorithms in the order the instructions are considered for
clustering, which in this case is a critical-path based ordering. The
main heuristic used is the Completion-Cycle, which is more con-
servative than the Start-Cycle, since it will select a distant cluster
only if the instruction’s consumers can still get their input data in
time.

[5] partitions the register file so as to have more register files
with fewer ports each. Cluster assignment takes place after schedul-
ing the code since the input of this code generator is the output
of a compiler that targets an ideal VLIW core. This, however, is
sub-optimal since the inter-cluster latencies can not be hidden ef-
fectively. The clustering heuristic used tries to minimize the inter-
cluster communication. This however is a poor clustering heuristic
as it is not guided by the schedule length.

[7] is one of the first iterative solutions to clustering. Each iter-
ation of the algorithm measures the schedule length by performing
instruction scheduling and doing a fast register pressure and ICC
count estimation. This being an iterative algorithm, it has a long
run-time and its use is not practical in compilers.

7.3 Clustered Architectures

A comprehensive taxonomy of inter-cluster communication imple-
mentations on VLIW architectures is presented in [26]. The de-
sign features (such as operating frequency, performance, energy
consumption, etc.) of each implementation are quantified and dis-
cussed.

Clustered super-scalars, such as [22],[15], use simpler clus-
tering algorithms. A review of the state-of-the-art heuristics are
presented in [4]. Such heuristics make use of the register depen-
dence graph and steer instructions based on the cluster where their
operands where steered to. Being dynamic approaches, they also
try to balance the run-time load of the clusters.

7.4 Instruction Scheduling for VLIW processors

Instruction Scheduling for VLIWs was pioneered by [10] with the
Trace-scheduling algorithm. This algorithm expands the schedul-
ing region beyond basic blocks to larger profiling-guided regions
called traces. These large regions provide enough instructions for
the scheduler to re-order effectively. A less complicated but highly
effective alternative to traces are the superblocks [13]. These re-
gions simplify the scheduler’s work by only allowing for outgoing
control edges from within a region. VLIW architectures with sup-
port for predicated execution can benefit from hyperblock schedul-
ing [18]. Extended Basic Blocks (EBB) [20] form tree-like regions
which are then scheduled by a normal list scheduler. Treegions [12]
are also tree-shaped, and are similar to EBBs. They are shown to
outperform superblock scheduling. LUCAS is implemented on top
of GCC’s [1] Haifa Scheduler which operates on EBBs.

8. CONCLUSION

This paper proposes LUCAS, a new unified cluster assignment and
instruction scheduling algorithm for clustered VLIW processors,
that is powered by a novel hybrid clustering heuristic. LUCAS out-
performs the state-of-the-art as it is capable of switching between
two heuristics at a very fine granularity. The switching is controlled
by two metrics, the cycle congestion and the instruction mobility.
The end result is a scheduler that generates code that performs best
across a wide range of inter-cluster latencies.

References

[1] Gece: Gnu compiler collection. http://gcc.gnu.org.

[2] ski ia64 simulator. http://ski.sourceforge.net.

[3] A. Aleta, J. Codina, J. Sdnchez, A. Gonzdlez, and D. Kaeli. Agamos:
A graph-based approach to modulo scheduling for clustered microar-
chitectures. IEEE Transactions on Computers, 2009.

[4] R. Canal, J. M. Parcerisa, A. Gonzlez, D. D. D. Computadors, and
J. Girona. Dynamic cluster assignment mechanisms. In HPCA, 2000.

[5] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register files for
vliws: A preliminary analysis of tradeoffs. In MICRO, 1992.

[6] J. Codina, J. Sanchez, and A. Gonzalez. A unified modulo scheduling
and register allocation technique for clustered processors. In PACT
2001.

[7] G. Desoli. Instruction assignment for clustered vliw dsp compilers: A
new approach. HP Laboratories Technical Report HPL, 1998.

[8] J. Ellis. Bulldog: A compiler for vliw architectures. Technical report,
Yale Univ., 1985.

[9] P. Faraboschi, G. Brown et al. Lx: a technology platform for customiz-
able vliw embedded processing. In ISCA, 2000.

[10] J. Fisher. Trace scheduling: A technique for global microcode com-
paction. /EEE Transactions on Computers, 1981.

[11] J. Fritts, F. Steiling, and J. Tucek. Mediabench II video: expediting the
next generation of video systems research. In SPIE, 2005.

[12] W. Havanki, S. Banerjia, and T. Conte. Treegion scheduling for wide
issue processors. In HPCA, 1998.

[13] W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,
R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E.
Haab, J. G. Holm, and D. M. Lavery. The superblock: An effective
technique for vliw and superscalar compilation. The Journal of Super-
computing, 1993.

[14] K. Kailas, K. Ebcioglu, and A. Agrawala. CARS: a new code genera-
tion framework for clustered ilp processors. In HPCA, 2001.

[15] R. Kessler. The Alpha 21264 microprocessor. /EEE Micro, 1999.

[16] V. Lapinskii, M. Jacome, and G. De Veciana. Cluster assignment for
high-performance embedded vliw processors. ACM TODAES, 2002.

[17] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein,
R. P. Nix, J. S. Odonnell, and J. C. Ruttenberg. The multiflow trace
scheduling compiler. Journal of Supercomputing, 1993.

[18] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann. Effective compiler support for predicated execution using the
hyperblock. In MICRO, 1992.

[19] C. McNairy and D. Soltis. Itanium 2 processor microarchitecture.
IEEE Micro, 2003.

[20] S. S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann, 1997.

[21] E. Ozer, S. Banerjia, and T. Conte. Unified assign and schedule: a new
approach to scheduling for clustered register file microarchitectures.
In MICRO, 1998.

[22] S. Palacharla, N. Jouppi, and J. Smith. Complexity-effective super-
scalar processors. In ISCA, 1997.

[23] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. Keckler, and C. Moore. Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture. In ISCA, 2003.

[24] H. Sharangpani and H. Arora. Itanium processor microarchitecture.
IEEE Micro, 2000.

[25] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J. Lee, W. Lee, et al. The Raw microproces-
sor: A computational fabric for software circuits and general-purpose
programs. In /EEE Micro, 2002.

[26] A. Terechko and H. Corporaal. Inter-cluster communication in vliw
architectures. ACM TACO, 2007.

[27] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Modulo scheduling
with integrated register spilling for clustered vliw architectures. In
MICRO, 2001.

[28] X. Zhang, H. Wu, and J. Xue. An efficient heuristic for instruction
scheduling on clustered vliw processors. In CASES, 2011.

	INTRODUCTION
	Code Generation
	Contributions

	BACKGROUND
	Clustering heuristics
	Instruction Scheduling

	MOTIVATION
	Clustering Heuristics
	Scheduling

	LUCAS
	EXPERIMENTAL SETUP
	Architecture
	Compiler
	Evaluation

	RESULTS AND ANALYSIS
	Performance
	Instruction Distribution
	Algorithmic Complexity

	RELATED WORK
	Combined Cluster Assignment & Instruction Scheduling
	Clustering on a separate pass
	Clustered Architectures
	Instruction Scheduling for VLIW processors

	CONCLUSION

