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Abstract

Auto-vectorizing compilers automatically generate vector
(SIMD) instructions out of scalar code. The state-of-the-art
algorithm for straight-line code vectorization is Superword-
Level Parallelism (SLP). In this work we identify amajor lim-
itation at the core of the SLP algorithm, in the performance-
critical step of collecting the vectorization candidate instruc-
tions that form the SLP-graph data structure. SLP lacks global
knowledgewhen building its vectorization graph,which neg-
atively affects its local decisions when it encounters com-
mutative instructions. We propose LSLP, an improved algo-
rithm that can plug-in to existing SLP implementations, and
can effectively vectorize code with arbitrarily long chains
of commutative operations. LSLP relies on short-depth look-
ahead for better-informed local decisions. Our evaluation on
a real machine shows that LSLP can significantly improve
the performance of real-world code with little compilation-
time overhead.

Keywords SIMD, SLP, Auto-Vectorization

1 Introduction

Modern optimizing compilers include auto-vectorization al-
gorithms that aim at generating SIMD instructions out of
scalar code automatically. Alternatively it is up to the pro-
grammer to explicitly expose parallelismwith either a vector-
aware language, or more commonly with a programming
model (e.g. OpenMP [6] pragmas), or even with low-level
target-specific intrinsics. The automatic approach is usually
the choice of preference for most software projects except
for some highly tuned library kernels.
Superword-Level Parallelism (SLP) [25] is the state-of-the-

art algorithm for automatically vectorizing straight-line code
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Listing 1. Operands in the wrong order; SLP succeeds.

1 load1 = load(A[0])

2 load2 = load(A[1])

3 sub1 = ... - ...

4 sub2 = ... - ...

5 store(E[0]) = sub1 + load1 // incompatible order

6 store(E[1]) = load2 + sub2 // incompatible order

7 // SLP reorders the code to this:

8 // store(E[0]) = sub1 + load1

9 // store(E[1]) = sub2 + load2

Listing 2. SLP cannot decide on ordering of operands.
1 mul11 = load(A[0]) * load(B[0])

2 mul12 = load(C[0]) * load(D[0])

3 mul21 = load(A[1]) * load(B[1])

4 mul22 = load(C[1]) * load(D[1])

5 store(E[0]) = mul11 + mul12 // SLP can fail

6 store(E[1]) = mul22 + mul21 // SLP can fail

7 // SLP may not perform the required reordering:

8 // store(E[0]) = mul11 + mul12

9 // store(E[1]) = mul21 + mul22

and has been implemented in several compilers, e.g. GCC [9]
and LLVM [14]. This algorithm is a bottom-up variant of
the original SLP [13], for faster compilation time, an impor-
tant requirement of industrial tools. The algorithm searches
through the code looking for vectorizable instruction groups
and generating an equivalent vector codewhen profitable. It
works by first scanning the code for scalars that can become
the seeds of vectorization and grouping them together to
form the first potentially vectorizable group at the root of
the SLP graph. Then, SLP walks up the use-def chains, to-
wards definitions, attempting to group more isomorphic in-
structions together, as long as they can be potentially vector-
ized. This process builds the SLP graph, the core data struc-
ture of the algorithm. Next, SLP evaluates whether convert-
ing the groups of the SLP graph into vectors can improve
performance. This cost calculation factors in the overheads
of inserting/extracting data into/out of the vector registers.
If vectorization is shown to be faster, vector instructions get
generated to replace the groups of scalars.
In this work we identify a major limitation at the core

of the SLP algorithm, namely, in the way it forms the SLP
graph, its core data structure. Upon visiting a group of com-
mutative instructions, the algorithm will greedily reorder
the operands based mainly on their opcode, with no knowl-
edge of the instructions further up the use-def chains. This
reordering is done in an attempt to allow vectorization in
cases where the operands of the commutative instructions
are vectorizable but just happen to be in the wrong order,
as shown in Listing 1. Although this might work well in the
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simplest of cases, the decision is based on a short-sighted
view of the code and can lead to early termination of the
SLP graph, leading to lower coverage and performance. For
example, in Listing 2, the existing SLP algorithm has no way
of figuring how it should reorder the operands to guarantee
that the code gets vectorized. To make matters worse, the
existing reordering fails when the code contains multiple
commutative operations of the same type chained together;
It will not consider for reordering the operands of the whole
chain. Section 3 shows detailed examples that motivate the
need for a better operand reordering strategy.
We propose Look-ahead SLP (LSLP), an algorithm that

generates an effective SLP graph in the presence of commu-
tative operations. It features: (i.) a novel graph construction
phase that forms multi-node groups containing chains of
commutative operations of the same opcode, and (ii.) an im-
proved operand reordering phase that can leverage informa-
tion from further up the use-def graph for both instructions
and memory addresses.

2 Background

2.1 Auto-Vectorization Algorithms

There are two distinct types of auto-vectorization algorithms
present in modern industrial compilers:

1. Loop-based algorithms (e.g. [17, 18]) which fuse consec-
utive loop iterations into a single vectorized iteration in
a strip-mining fashion.

2. Straight-line code algorithms, the most common being
the fast bottom-up SLP [25], which is inspired by [13].
Their main features are that: (i.) they are not restricted to
operate within loops, i.e., they can handle straight-line
code anywhere in the program, (ii.) they can vectorize
code within loops where the loop-vectorizer fails.

Both loop-based and straight-line code algorithms con-
ceptually perform the same operation: they reduce VL (Vector-
Length) isomorphic instructions into VL-wide vector instruc-
tions. However, they follow different approaches to achieve
this result. In loop-based algorithms, the presence of the
loop structure implies the presence of multiple copies of
each instruction in neighboring iterations. Straight-line code
algorithms, however, do not rely on the presence of a loop,
so they have to scan the code for repeated sequences of iso-
morphic scalar instructions. A common configuration is to
run the SLP pass after the loop-based vectorizer.

2.2 SLP Vectorization

Awidely used straight-line code vectorizer is the bottom-up
SLP algorithm [25]. Its goal is to find isomorphic instruction
sequences and vectorize them if profitable. It works by first
scanning the compiler’s intermediate representation, identi-
fying specific type of instructions, referred to as seeds. The
seeds are instructions which are likely to form vector se-
quences. These are usually stores or instructions that form

5.
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Figure 1. Overview of the bottom-up SLP algorithm.

reduction trees. The seeds become the first potential vector
group and are the starting point of the algorithm. The al-
gorithm then searches through the code prior to the seeds,
following the use-def chain, to extend the SLP graph in or-
der to form the rest of the vectorizable groups. The code to
be vectorized can span multiple basic blocks, as long as each
group of instructions to be vectorized belongs to the same
basic block.
An overview of the SLP algorithm is shown in the flow-

chart of Figure 1 (the highlighted section is where LSLP dif-
fers from the vanilla SLP algorithm). The SLP algorithm first
scans for vectorizable seed instructions (step 1), which are
instructions of the same type and bit width that are likely to
form vectorized code e.g.: (i.) non-dependent store instruc-
tions that access adjacent memory locations (scalar evolu-
tion analysis [4] is commonly used to test for this), (ii.) in-
structions that lead to idioms such as reduction trees (e.g.
a reduction tree of additions), gather-like idioms (e.g., non-
consecutive loads), etc. Compilers commonly look for adja-
cent store seeds first [25], as they are the most promising
seeds. The seeds are inserted into a list (step 2).
The algorithm then goes through the seeds and starts to

build the SLP graph (step 3). Building the SLP graph involves
forming groups of potentially vectorizable instructions by
following the data dependence graph that starts at the seed
instructions. The state-of-the-art method for generating the
graph is to start from store seed instructions and build the
graph from the bottom up. This is the approach followed
in both GCC’s and LLVM’s implementations of the SLP vec-
torizer [25]. Each group contains the scalar instructions that
are candidates for vectorization, but it also carries some ad-
ditional auxiliary data such as the group’s cost (see next
step). Once the algorithm encounters scalar instructions that
cannot form a vectorizable group, it forms a non-vectorizable
group which will carry the cost of collecting the data from
scalars and inserting them into a vector. At this point the
algorithm stops exploring the code in this direction as this
path cannot be vectorized any further.
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Listing 3.A simplified version of the SLP graph generation.
1 build_graph(instrs) {

2 // i. Termination conditions

3 if instrs not vectorizable: return

4 // ii. Append new node to graph

5 graph.add(new_group_node(instrs))

6 // iii. Operand ordering based on opcode

7 reorder_operands(instrs.operands)

8 // iv. Recursion for each operand

9 for operands in instrs.get_operands():

10 build_graph(operands)

11 }

After constructing the graph, SLP estimates the perfor-
mance benefits of the vectorized code (step 4). This is done
with the help of the compiler’s target-specific cost model.
The cost of the graph is equal to the sum of the savings
from converting each group of scalar instructions into vec-
tor form (the lower the cost the better) plus the overheads
for gathering the inputs of the vector instructions. In step 5
the cost of the vectorized code with the SLP graph is com-
pared against a threshold (usually 0) to determine whether
code generation of the vector code should proceed (steps 6
and 7). If so, the compiler modifies the intermediate repre-
sentation code by replacing the groups of scalar instructions
with their equivalent vector instructions (step 6), and emits
any insert or extract instructions required for the flow of
data between the vector and scalar instructions (step 7). If,
however, the cost of vectorization is higher than that of the
scalar code, then the code remains unmodified. Afterwards,
the current seed group is removed from the list (step 8) and
the process repeats for all seeds collected by the SLP front-
end (step 9).

2.3 SLP Graph Generation

The SLP Graph is generated in step 3 with the help of the re-
cursive function build_graph(), as shown in Listing 3.
This function is initially called with the seed instructions as
the inputs.
Thebuild_graph() recursive function (line 1) has four

distinct steps: (i.) Check the termination conditions1 (line
2), (ii.) Build the vectorizable nodes and connect them to
the rest of the SLP graph (line 4), (iii.) Perform operand re-
ordering if it is legal and required (line 6). Only commutative
instructions are legal candidates for reordering (not shown
for brevity). In vanilla SLP, reordering considers only the
opcode of the operands of the current instruction, and in
the case of loads whether or not they are consecutive. (iv.)
Finally, the function calls itself for all operands to continue
growing the graph up the use-def chains (line 8).

3 Motivation

This section motivates LSLP with the help of three examples
that highlight the weaknesses of the existing SLP algorithm,
while demonstrating how LSLP overcomes them.

1 The instructions must be: i) scalars, ii) isomorphic, iii) unique, iv) all in

the same basic block, v) schedulable, and vi) not yet in the SLP graph.

long A[],B[],C[];

A[i+0]=(B[i+0]<<1)&(C[i+0]<<2);
A[i+1]=(C[i+1]<<3)&(B[i+1]<<4);
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Figure 2. Operand reordering can avoid an unnecessary
load address mismatch during vectorization.

3.1 Load Address Mismatch

This example illustrates how a load address mismatch can
make vanilla SLP algorithm fail unnecessarily. Figure 2(a)
shows the source code that we will use to demonstrate it.
The use-def DAGs for this code are shown in Figure 2(b),
while SLP is shown in Figure 2(c).

SLP starts from the seeds, which in this example are the
consecutive stores to A[i+0] and A[i+1]. The stores ac-
cess consecutive memory locations and as such they are vec-
torizable and are grouped together (green box). Next, SLP
follows the data flow up the graph and groups together the
pair of bit-wise-and (&) instructions. Since the bit-wise-and
is a commutative instruction, SLP is free to change the order
of the input operands in any way. However, SLP will only
do so if the opcodes differ, but in this case the operands are
both left-shift («) operations. With no re-ordering taking
place, SLP groups the left-shift operations in their original
order. Finally, SLP attempts to group the leaf loads B[i+0]
and C[i+1] together into one group, and C[i+0] and
B[i+1] into another. However, these loads do not access
consecutive memory locations, therefore all leaf nodes re-
main as scalars (shown in red).
At this point SLP needs to determine whether it is prof-

itable to generate vector code, given the SLP graph of Fig-
ure 2(c). To that end, SLP computes the cost of each node in
the SLP graph (integers near the groups of Figure 2(c)). The
cost is calculated as the difference VectorCost − ScalarCost,
with negative cost values implying better performance of
vector code compared to the equivalent scalar code. SLP
vectorization cost also accounts for the additional cost of
extracting intermediary values with external use, i.e. when
they are used by other instructions not in the group of in-
structions being considered for vectorization. However, for
simplicity we assume there is no extraction cost in our ex-
amples. The cost of a group is a metric of the overhead of all
instructions in the group. A typical integer ALU instruction
(e.g., an ADD) has a cost of 1 in both scalar and vector form,
therefore a group cost of −1 (VectorCost = 1, ScalarCost =
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2) is quite common for a vectorizable group of two ALU in-
structions. The actual cost values used result from querying
the compiler’s cost model2.
When the operands of a vectorizable group are scalars,

these scalar values need to be gathered and aggregated into
a vector register, typically leading to the group cost of +2
for the non-vectorizable group in our examples (e.g., Fig-
ure 2(c)). If the operand group contains nothing but con-
stants, the gather operation has a cost of zero (as constants
vectors and constant scalars can be loaded from memory
with equal ease). Mixed groups of constants and scalar in-
structions get a positive cost proportional to the size of the
vector (+2 in our examples, see Figure 3(c)).

In Figure 2(c) the total cost is zero, meaning that vector-
ization provides no performance benefit, therefore the code
remains scalar. LSLP, on the other hand can successfully vec-
torize the code, as shown in Figure 3(d). LSLP chooses the
best reordering of the operands by evaluating a few levels
ahead in the tree. The address locations of the load instruc-
tions are also considered when reordering the operands of
the bit-wise-and (&) nodes. The reordering evaluation based
on a few levels ahead provides vital insight into how the
operands should get reordered for best vectorization, lead-
ing to Lane 2 shift-operands getting swapped. The end result
is that vectorizable groups are formed for the loads on both
sides (B[i+0] and B[i+1]) and (C[i+0] and C[i+1]).
The total cost is −6, which is profitable for vectorization.

3.2 Opcode Mismatch

This example focuses on a different problem, that of provid-
ing information to the vectorizer about the instruction op-
codes that are found beyond the currently visited node. Fig-
ure 3(a) shows the input code. Its use-def DAGs are shown
in Figure 3(b). SLP fails to properly reorder the operands of
the addition since both inputs are bit-wise-and (&) nodes. As
a result, when the algorithm reaches the operands of the bit-
wise-and instructions, it fails to form a vectorizable group as
they are instructions of different opcode (left-shift («) and
addition (+)). The cost of the SLP code is +4, which is non-
profitable for vectorization, and as such remains scalar.
In LSLP, on the other hand, the algorithm has access to

information about the instructions beyond the current level
of the tree. It performs reordering based on the opcodes of
the paths leading to the addition. The reordering evaluation
dictates that, in Lane 1, the operands of the addition should
be swapped, as shown in Figure 3(b). This leads to the SLP
graph of Figure 3(d), which is vectorizable up until (exclud-
ing) the leaf nodes. The cost of this SLP graph is −2, which
is considered profitable for vectorization.

2 The compiler’s cost model provides a target-dependent cost estimation

that approximates the cost of an intermediate representation (IR) instruc-

tion when lowered to machine instructions. Our examples make use of the

cost values provided by LLVM’s target-transformation interface (TTI) for

Intel’s processor.

A[i+0]=((B[2*i]<<1)&0x11)+((C[2*i]+ 2)&0x12);
A[i+1]=((D[2*i]+ 3)&0x13)+((E[2*i]<<4)&0x14);

unsigned long A[],B[],C[],D[],E[];
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Figure 3. A proper operand reordering is able to avoid an
unnecessary opcode mismatch during vectorization.

3.3 Associativity Mismatch and Multi-Nodes

This section motivates the third and final improvement in-
troduced by the LSLP. So far, we have shown that operand
reordering considers a single instruction group (for both
SLP and LSLP). There are situations, however, where this
proves inadequate. Consider, for example, the code in Fig-
ure 4(a). The two lines of code contain the same operations
but in different evaluation order (associativity), leading to
the two visually different use-def DAGs of Figure 4(b).
During the bottom-up traversal of the DAGs, some of the

nodes no longer match in all lanes, e.g., the right operands
of both bit-wise-and (&) instructions. To complicate things
further, none of the previously described techniques of Sec-
tions 3.1 and 3.2 can transform the graphs into fully isomor-
phic. The reason being that the existing SLP can only per-
form reordering on each node individually.
LSLP can successfully fix the associativity mismatch by:

1. Changing the walking strategy to prioritize consecutive
commutative operations of the same opcode,

2. Supporting the formation of large multi-nodes composed
of adjacent instructions with equal opcodes (e.g., the con-
secutive bit-wise-and (&)), and

3. Performing reordering on all operands of the multi-node
using the techniques of Section 3.1 and Section 3.2. The
reordering happens at themulti-node frontiers (e.g., across
the blue arrows depicted in Figure 4(b)).
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unsigned long A[],B[],C[],D[],E[];

A[i+0]=A[i+0]&(B[i+0]+C[i+0])&(D[i+0]+E[i+0]);
A[i+1]=(D[i+1]+E[i+1])&(B[i+1]+C[i+1])&A[i+1];
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Figure 4. LSLP forms multi-nodes of commutative opera-
tions and reorders the multi-node input edges.
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Figure 5. The states of Graph Formation. The highlighted
sections are introduced or improved by LSLP.

Traditional SLPwill partially vectorize the code, as shown
in Figure 4(c), with a total cost of −2. LSLP, on the other
hand, successfully reorders the operands across the edges
of the multi-node and generates a fully vectorizable code
with a much better cost of −10 (Figure 4(d)).

4 Look-ahead SLP

4.1 Overview

LSLP introduces several changes at the core of the SLP algo-
rithm: the graph formation (the highlighted step 3 (Genera-
tion of (L)SLP graph) of Figure 1). As shown in the examples
of Section 3, the graph formation is critical for the effective-
ness of the vectorizer as it is the step where the code’s iso-
morphism is explored. The changes introduced by LSLP im-
prove the algorithm’s capability of transforming code that
is non-isomorphic into equivalent isomorphic code.

Listing 4. LSLP Multi-node graph formation
1 // In: Array of candidate values for vectorization

2 // Out: Vectorization graph of grouped values

3 build_graph(values) {

4 // Stop growing graph

5 if non-vectorizable values: return

6 // Create new node for values and add to graph

7 graph.add(new_group_node(values))

8 // Recursion call to grow graph further

9 // 1.Commutative

10 if values are commutative:

11 // A. Coarsening Mode

12 for operands in values.get_operands():

13 if (operands’ opcode == values’ opcode

14 and operands don’t escape the multi-node):

15 build_graph(operands)

16 else:

17 multi-node_operands.push_back(operands)

18 // B. Normal Mode: Finished building multi-node

19 if values are the root of multi-node:

20 reorder_operands(multi-node.get_operands())

21 for operands in multi-node.get_operands():

22 build_graph(operands)

23 // 2.Non-Commutative

24 else:

25 for operands in values.get_operands():

26 build_graph(operands)

27 }

In the original SLP algorithm, the generation of the graph
follows two states (see Figure 5(a)): (i.) Grouping scalar in-
struction into a group node of vectorizable instructions, and
(ii.) Reordering the operands.

In LSLP, the graph formation is improved to help extract
hidden isomorphism (see Figure 5(b)): (i.) It introduces the
additional state of Multi-Node Formation, where the graph
traversal is redirected to include all chained commutative
operands of the same opcode into a single multi-node, be-
fore allowing it to proceed further. (ii.) The operand reorder-
ing is now more powerful, aided by the look-ahead knowl-
edge, and applicable onto multi-nodes. This new reordering
allows the algorithm to successfully form more groups, as
shown in the examples of Section 3. Both improvements al-
low LSLP to exploit isomorphism that would otherwise be
hidden by the differences in commutativity.

4.2 Multi-Node Formation and Reordering

Traditional SLP performs a simple operand reordering for
a single group node of commutative operations. This, how-
ever, is not adequatewhenmultiple commutative operations
are chained together. LSLP implements amore powerfulmulti-
node reordering while maintaining the efficient bottom-up
traversal. This is achievedwith a graph building process that
works in two modes, within the traditional bottom-up ap-
proach. The algorithm is listed in Listing 4.
The build_graph() function initially receives an ar-

ray of seed values as arguments (usually consecutive store
instructions). The function then proceeds by performing sev-
eral checks to determine if these values are vectorizable. If
they are not vectorizable, it stops building the graph on this
path (line 5). Otherwise, the values are grouped into a single
node, which is then attached to the SLP graph (line 7).
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Figure 6. LSLP’s coarsening step forms a multi-node.

The algorithmhas now reached the recursion point, which
recursively calls build_graph() with the operands of
the values recently grouped into a vectorizable group node.
At this point, there are two modes of operation:

• Coarsening mode: When a commutative instruction node
is reached, the algorithm switches to coarsening mode.
This guides the graph formation towards instruction nodes
of the same opcode (line 13), eventually leading to the
formation of a multi-node composed of several commu-
tative nodes. Since themulti-node’s intermediate internal
temporary values are not guaranteed to be preserved, the
multi-node cannot include values that escape the multi-
node (line 14). All the operands of this multi-node are
stored into themulti-node_operandsarray (line 17).
Figure 6 highlights the outcome of the coarsening mode
of LSLP. While SLP forms a group node for each instruc-
tion pair (Figure 6(b)), LSLP prioritizes the commutative
instruction chain, leading to a large multi-node. Since the
multi-node is composed of a chain of commutative in-
structions with the same opcode, their operands can be
re-organized in any order without changing the seman-
tics of the program.

• Normal mode: When no more instruction nodes can be
added to the coarse node, the algorithm switches back
to normal mode, continuing its regular process (line 19):
Operands are reordered (line 20) and build_graph is
called recursively for each one of them (line 22).

Finally, non-commutative operations are treated just like in
vanilla SLP, where the SLP graph grows following the order
of the operands (line 25).

4.3 Top-Level Operand Reordering

The proposed reordering algorithm is a complete redesign
of LLVM’s reordering algorithm, while maintaining some
of its basic features for a fair comparison. LSLP’s reordering
introduces support for multi-nodes and for the look-ahead
exploration and score evaluation. Overall, it performs a sin-
gle sequential pass over each lane, deciding on the operands
order without backtracking 3 (just like the original LLVM al-
gorithm). The top-level function is listed in Listing 5, line 3.

3Backtracking can help improve performance, but this study is not in the

scope of this paper.

Listing 5. LSLP’s Top-level operand reordering
1 // Input: Unordered 2D-array (operands x lanes)

2 // Out: Reordered 2D-array (operands x lanes)

3 reorder_operands(operandVec[operand][lane]) {

4 // 1. Strip first lane

5 for i in {0..numOperands}:

6 oper = operandVec[i][0]

7 final_order[i][0] = oper

8 mode[i] = CONST, LOAD or OPCODE depending on oper

9
10 // 2. For all other lanes, find best candidate

11 for lane in {1..lanes}:

12 candidates[] = operandVec[:][lane]

13 // Look for a matching candidate

14 for i in {0..numOperands}:

15 // Skip if we can't vectorize

16 if mode[i] == FAILED:

17 continue

18 last = final_order[i][lane-1]

19 best,mode[i] =get_best(mode[i],last,candidates)

20 // Update output

21 final_order[i][lane] = best

22 // Detect SPLAT mode

23 if (i == 1 and best == last):

24 mode[i] = SPLAT

25 return final_order

26 }

Mode Description

CONST look for a constant
LOAD look for a consecutive load to that in the previous lane
OPCODE look for an operation of the same opcode
SPLAT look for the exact same operation
FAILED vectorization has failed, give higher priority to others

Table 1. Brief description of the operand modes.

The candidates for any lane are all the available operands
of that specific lane (line 12). A single commutative instruc-
tion has just two operands, but as expected, multi-nodes
have more (see Section 4.5).
The first action is to accept the operands of the first lane

in their existing order (line 5). This decision is final, and
all operand slots (indexes 0 to numOperands) are filled in
final_order[i][0] (line 7). Also, all mode slots are
initialized (line 8) based on the type of the instruction.
The mode array holds the state of each operand slot. It

holds information that applies to all lanes but that cannot
be inferred by examining only the instruction at the previ-
ous lane (we would have to examine multiple instructions).
Its purpose is to filter out incompatible nodes in the search
for the best candidate for a given slot. In other words, when
looking for a candidate, we look for one that matches the
current mode, otherwise vectorization is guaranteed to fail
for this slot. For example, if the mode is LOAD, then unless
we find another load instruction, vectorization is guaran-
teed to fail. If the mode is FAILED, it means that vectoriza-
tion is no longer possible for this operand slot as we could
not find a matching candidate in one of the previous lanes.
Table 1 shows the list of the modes and their description.

The next step is to go through all lanes from 1 to lanes,
looking for matching candidates (line 11). We go through
all operand indexes (line 14) looking for the best matching
candidate, given the current mode[i] and the last operand

6



Look-Ahead SLP CGO’18, February 24–28, 2018, Vienna, Austria

(line 19). A detailed description on how to select the best
operand can be found in Section 4.4 and in Listing 6. The
decision is once again final (no backtracking) and the best
operand is placed intofinal_order[i][lane]. In case
get_best() fails to find a good candidate, it will return
‘FAILED’ alongwith the default best candidate. A failed slot
will remain FAILED for the remaining lanes. If best is ex-
actly the same instruction from the previous lane, then we
switch to SPLATmode (line 23) as this improves the vector-
ization cost.
The more interesting part of the operand reordering pro-

cess is that LSLP uses the look-ahead technique within the
get_best() function. It is based on data collected by hav-
ing the algorithm peeking at the nodes beyond the current
level. This is discussed in Section 4.4.

4.4 Finding the Best Operand with Look-Ahead

The best operand among the candidates is found either by
finding a trivially matching value, or by performing look-
ahead. We get a trivial match only if there is a single candi-
date with matching opcode. If we have multiple matching
candidates we break ties by applying the look-ahead tech-
nique. The implementation is shown in Listing 6.
As a first step, we collect all matching candidates (that is

a consecutive load or operands of the same opcode) into the
best_candidates array (line 14). For load instructions,
the matching test uses scalar evolution analysis in order to
compare if two load addresses are consecutive and therefore
vectorizable. Thematching candidates are then used by both
the trivial and the look-ahead parts of the algorithm.
The trivial case is shown in lines 16 to 21. If we have no

matches (the best_candidates vector is empty), then
our search for a vectorizable operand has failed (line 16).
Thus, we set the mode to FAILED and set the default value
(line 11) to be returned. If, on the other hand, we have just a
single match in best_candidates, then this is the one
to return (line 20).
The interesting part of the algorithm is when we have

multiple candidates to choose from (line 22). This is a unique
feature of LSLP and uses the look-ahead technique.We start
from a look-ahead level of 0 and we evaluate the score of
each candidate at each level until we either reach the look-
ahead limit (line 25), or we manage to break ties and get a
clear winner (line 34).
Conceptually, the look-ahead function tries to match the

nodes found until a specific depth in the DAG. It tries all pos-
sible combinations of the operands of the last value against
the operands of the current candidate. The more the nodes
that match, the higher the score. As expected, this can be-
come an expensive operation, which is why the maximum
level is limited to a small positive integer.
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Figure 7. Example of the look-ahead calculations.

The calculation of the look-ahead score is defined in List-
ing 7. Its inputs are: (i.) the last lane’s value, (ii.) the can-
didate value of the current lane, and (iii.) the current look-
ahead level. The function recursively calls itself using as ar-
guments all possible combinations of operands of the two
values (lines 8 to 9) and sums up the score returned by each
recursive call (line 10).When the function reaches either the
maximum level (line 5) or values of different kinds (e.g. in-
struction vs constant), then the function for trivial matching
check is used for getting the score (line 6). The sum 4 of all
scores collected during the recursion is returned in line 12.
An example of the look-ahead calculation is shown in Fig-

ure 7. The last instruction considered is the left-shift («) on
the left hand side of Figure 7(a), while the candidates for the
current lane are the two left-shifts on the right hand side
of Figure 7(a). Nodes of the same color match as their pre-
decessors match. Therefore the look-ahead calculations for
those matching nodes should yield a higher score. The cal-
culations are visualized in Figure 7(b). All operands of the
last instructions are considered against all operands of the
candidate nodes. Each pair of operands contributes to the to-
tal score which is the sum of the parts. The light-blue node
has the best score of 2, in this example, as both its operands
match the operands of the last instruction.

4.5 A Multi-Node Reordering Example

The example of Figure 8 shows how the concepts discussed
so far are applied in practice. It visualizes the process of
the look-ahead reordering on a multi-node, at the exact mo-
ment where the multi-node has formed and its immediate
operands are about to be considered for reordering. Figure 8(a)
shows the current state of the vectorization graph: the store
seed instructions have already formed a group node and
the consecutive bit-wise-and (&) instructions have formed
a multi-node (highlighted in pink). This is a snapshot of

4Alternatively the maximum score could be used instead of the sum. A

complete exploration of the heuristics is beyond the scope of this paper.
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Listing 6. LSLP’s get best candidate
1 // Inputs: 1) operand vectorization mode

2 // 2) operand of last lane

3 // 3) array of candidate operands

4 // Outputs: 1) The best candidate (IR value)

5 // 2) The new mode for this operand

6 get_best(mode, last, candidates[]) {

7 switch(mode) {

8 case CONST:

9 case LOAD:

10 case OPCODE:

11 best = candidates[0] // Default value

12 for candidate in candidates:

13 if are_consecutive_or_match(last, candidate):

14 best_candidates.push_back(candidate)

15 // 1. If we have a trivial solution, use it

16 if best_candidates.size() == 0: // No matches

17 mode = FAILED

18 break

19 if best_candidates.size() == 1: // Single match

20 best = best_candidates[0];

21 break

22 // 2. Look-ahead to choose from best_candidates

23 if mode == OPCODE:

24 // Look-ahead on various levels

25 for level in {1..look-ahead-max}:

26 // Best is the candidate with max score

27 for candidate in best_candidates:

28 // Get the Look-Ahead score

29 score = getLAScore(last, candidate, level)

30 if score > bestScore:

31 best = candidate

32 bestScore = score

33 // If found best at level don't go deeper

34 if best and not all scores equal: break

35 break

36 case SPLAT:

37 // Look for other splat candidates

38 for value in candidates:

39 if value == last:

40 best = value; break

41 break

42 case FAILED:

43 // Don't select now, let others choose first

44 best = NULL; break

45 }

46 remove best from candidates[]

47 return (best, mode)

48 }

Listing 7. LSLP: Get Look-Ahead Score
1 // Inputs: Values to evaluate: val1 and val2

2 // Maximum Look-Ahead level to explore

3 // Output: The Look-Ahead score (integer)

4 int getLAScore(val1, val2, max_level) {

5 if max_level == 0 or val1,val2 not matching:

6 return (int)are_consecutive_or_match(val1, val2)

7 score_sum = 0

8 for val1_op in val1.get_operands():

9 for val2_op in val2.get_operands():

10 score=getLAScore(val1_op, val2_op, max_level-1)

11 score_sum += score

12 return score_sum

13 }

the graph just before the operands of the multi-node are
considered for reordering and for creating group nodes out
of them for the SLP-graph. The rest of the DAG nodes are
shown in faded gray; these nodes are only considered by the
look-ahead score calculation. The current state is therefore
just before the call to reorder_operands() (Listing 4,
line 20).

The table of Figure 8(b) summarizes the states of the func-
tion reorder_operands(), defined in Listing 5, as it de-
cides on the operand ordering from lanes 0 to 3. It tracks
the values of the final_order 2D-array, the mode array,
and finally the scores returned by getLAscore() (List-
ing 7) for the candidates being considered. Reordering is per-
formed in a single pass from left to right (lane 0 to lane 4)
with no backtracking.

As mentioned in Section 4.3, the first step is to strip the
first lane. This sets the operands in the slots in their original
order [(«), (L), 1, («)] and also sets the modes to OPCODE,
LOAD,CONST, and OPCODE, respectively. We are now done
with Lane 0 and can proceed to Lane 1.

In Lane 1, the candidate nodes are: {(L), («), 1, («)}. It is
trivial to fill in slots 1 and 2 as there is only a single candi-
date thatmatches themode of each slot. Slots 0 and 3 require
the use of the look-ahead technique to choose between the
two possible left-shift («) nodes. The score of each candi-
date is shown in the table (for slot 0, the light-blue («) has a
score of 2 while the green («) has a score of 1). The score, as
computed by Listing 7, is the number of matches between
the sub-graphs, from the current level onwards. The can-
didate with the best score is chosen and inserted into the
final_order array.
In Lane 2, the process repeats. It is important to note that

the candidate operands are different than before: there is
a load instead of a constant (yellow (L) node loading from
E[i]). This causes the mode for slot 2 to switch to the
FAILED state, as it fails to collect a constant that it was
hoping for since Lane 0.
Finally, in Lane 3, the operands beyond the left-shift («)

have changed. There is an add (+) instead of a constant on
its right operand. This causes the look-ahead cost to change
and not to favor either of the two shifts. In this case, the
algorithm is lucky enough to choose the first of the two, but
this is not guaranteed.
The outcome of operand reordering is the final state of

the final_order 2D-array for all operand slots across
all lanes. The light-blue left-shifts are all mapped to slot
0, which will form a vectorizable group node in the SLP
graph. All the loads in slot 1 have consecutive accesses to
D[i:i+3] andwill form another vectorizable group. Slot 2
contains three constants and one load, andwill therefore not
be vectorized. Finally, slot 3 contains the green left-shifts,
which will also form a vectorizable group.

The effectiveness of the look-ahead scheme is visible once
the algorithm visits the faded nodes, beyond the immediate
predecessors of the multi-node. The loads from C[i:i+3]

(immediate predecessors of the green left-shifts) will end up
being vectorized, while the vanilla SLP would fail to vector-
ize them. The same holds for the loads from B[i:i+3],
right before the light-blue left-shifts.
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Figure 8. An illustrative example that shows how the operand reordering works with multi-nodes and Look-Ahead scores.
The internal states are shown in the table. The reordering happens sequentially from Lane 0 to Lane 3, without backtracking.

5 Results

5.1 Experimental Setup

We implemented LSLP in LLVM 4.0 as an extension to the
existing SLP vectorizer . We compiled four configurations:
(i.) O3 which corresponds to -O3 with all vectorizers dis-
abled, (ii.) SLP-NR (No Rotation) which is -O3 with only
the SLP vectorizer enabled but with the operand reordering
disabled, (iii.) SLPwhich is -O3 with only the SLP vectorizer
enabled and operand reordering enabled (this is the vanilla
SLP), and (iv.) LSLP which is -O3 with only the LSLP algo-
rithm enabled instead of SLP.
All configurations were compiled with clang using the

following options: -O3 -ffast-math -mavx2 -march=skylake
-mtune=skylake, and with the loop vectorizer disabled. The
target platform is a Linux-4.9.0, glibc-2.23 systemwith an In-
tel Core i5-6440HQ Skylake CPU and 8 GB RAM. We evalu-
ated our approach on real code extracted from C/C++ SPEC
CPU2006[28] as shown in Table 2, and we included themoti-
vating examples of Section 3 in these tests for completeness.
The fortran benchmarks were compiled with the GCC for-
tran front-end with the help of the DragonEgg [1] project.
For all performance and compilation-time results, we report
the average of 10 executions, after skipping one initial run.
The error bars show the standard deviation. The static cost
we report is LLVM’s TTI-based cost (see Section 2.2).

5.2 Performance

Wemeasured the execution time of all O3, SLP-NR, SLP and
LSLP. The speedup over O3 is shown in Figure 9 and the to-
tal static cost seen by each vectorization scheme is shown in
Figure 10. A better vectorization algorithm should improve
the cost, and if the vectorized code is in a hot part of the

Kernel Benchmark Filename:Line

453.boy-surface SPEC2006[28] 453.povray fnintern.cpp:355
453.intersect-quadratic SPEC2006[28] 453.povray poly.cpp:813
453.calc-z3 SPEC2006[28] 453.povray quatern.cpp:433
453.vsumsqr SPEC2006[28] 453.povray vector.h:362
453.hreciprocal SPEC2006[28] 453.povray hcmplx.cpp:113
453.mesh1 SPEC2006[28] 453.povray fnintern.cpp:759
433.mult-su2 SPEC2006[28] 433.milc m_su2_mat_vec_a.c:23
453.quartic-cylinder SPEC2006[28] 453.povray fnintern.cpp:924
motivation-loads Section 3.1 Figure 2
motivation-opcodes Section 3.2 Figure 3
motivation-multi Section 3.3 Figure 4

Table 2. Brief description of the kernels used for evaluation.
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Figure 11. Static cost normalized to SLP (full benchmarks).

code, it should also lead to better performance. We use a
maximum of 8 levels for look-ahead in the LSLP reordering.
The SLP-NR result is of particular importance. It shows

that the default rotation heuristic used by vanilla SLP (that
is using the immediate predecessor’s opcodes to perform
the rotation) is not adequate. In these workloads, vanilla
SLP achieves about the same performance and static cost as
the SLP-NR. Although this result is not representative for
the comparison between SLP and SLP-NR, it shows that un-
der difficult conditionswhere SLPwould require look-ahead
knowledge or multi-node support, SLP’s simple heuristic
performs poorly, about the same as SLP-NR.
As it is common in vectorization studies, the performance

numbers are not always consistent with the costs reported
by the algorithm.Workloads 433.mult-su2-mat and 453.quartic-
cylinder are perfect examples of a cost model - performance
inconsistency. Although the costmodel is showing profitabil-
ity, the performance achieved is actuallyworse thanO3. Sim-
ilarly, 453.mesh1 SLP-NR and SLP show the exact same cost,
but the generated code and their performance is different,
with SLP-NR being superior to SLP. These are all cost mod-
eling issues that require fine-tuning, and not a limitation
of the vectorization algorithm itself. The vectorization al-
gorithm relies on the compiler’s cost model for checking
profitability, which can cause performance regressions if the
cost model is inaccurate. The rest of the results show the ex-
pected behavior: better costs lead to better performance.
The 453.vsumsqrworkload is also rather interesting. Even

though the LSLP cost is exactly the same as that of SLP, its
performance is significantly better. We examined the gener-
ated code and noticed that even though LSLP does reorder
the instructions in the graph to make sure that the leaf loads
access consecutive memory locations, the loads themselves
are not being vectorized because there are only three of
them, instead of four. However, the code generator identifies
this optimization opportunity and performs local packing of
some of the consecutive leaf loads for LSLP. This same opti-
mization does not happen with the vanilla SLP as the loads
are not on consecutive locations. This is yet another case
where the cost modeling proved rather weak.

We also measured the impact of LSLP on whole bench-
marks. Figure 11 shows the total cost improvement against
the state-of-the-art SLP heuristic and the lack of a reorder-
ing heuristic (SLP-NR). Please note that we only show the
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Figure 12. Speedup over O3 for full benchmarks.

benchmarks that trigger LSLP, the rest of them behave sim-
ilarly to SLP. A reordering heuristic is usually beneficial.
However, there are cases where the better heuristics per-
formworse. For example SLP-NR is better than SLP in 481.wrf
and SLP is slightly better than LSLP in 433.milc. However,
as we showed in Figures 9 and 10, LSLP can locally improve
individual vectorization regions compared to both SLP and
SLP-NR. This shows that local heuristics cannot always guar-
antee a globally better solution. On average, LSLP improves
the static cost compared to both SLP and SLP-NR.
We also measured the execution speedup normalized to

O3 (Figure 12). The figure shows that the impact of LSLP
on whole SPEC benchmarks is rather small. It is about 1%
speedup over SLP for 453.povray and 435.gromacs, while
the rest are within the noise margin. This is expected be-
havior, since the regions that get improved by LSLP are not
necessarily in hot execution paths.

5.3 Optimizations Sensitivity Analysis

In order to provide insights into LSLP’s features that im-
prove performance, we measured each of them in isolation.
We measured the following configurations: (i) We started
with look-ahead depth of zero (LSLP-LA0) and increased it
up to four (LSLP-LA4) while the multi-node size was set to
infinity. (ii) We restricted the multi-node size to one (LSLP-
Multi1) and incrementally increased it up to three (LSLP-
Multi3) while keeping the look-ahead depth at its maximum
value of eight. Figure 13 shows the normalized breakdown;
the SLP and LSLP bars are shown for reference.
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Figure 13. Speedup breakdown for Look-Ahead depths (LA-
{1,2,4}) and Multi-Node size (Multi-{1,2,3}).

Overall, as shown in the geo-mean cluster, both optimiza-
tions contribute to the performance improvements. A look-
ahead depth of four and a multi-node size of three seem to
be good values for all our benchmarks. Disabling the look-
ahead optimization alone brings LSLP’s performance all the
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way down to SLP’s level of performance. This shows that
the multi-node formation acts as an enabler for look-ahead
to achieve its peak performance.

5.4 Compilation Time

Compilation time is important for industrial compilers. The
total compilation wall time normalized to O3 is shown in
Figure 14. LSLP is configured with a maximum look-ahead
depth of 8. As expected SLP-NR, SLP, and LSLP do increase
compilation time over O3 by about 2%, with SLP and SLP-
NR being almost identical. On average, LSLP increases the
compilation over SLP slightly, by less than 1%, but there are
cases where it is both higher (e.g., motivation-{multi, loads})
and lower (e.g., 453.calc-z3).
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Figure 14. Compilation time, normalized to O3 (LA=8).

One major factor that contributes to vanilla SLP’s com-
pilation time is the SLP graph construction. LSLP’s look-
ahead exploration can make this slower. Occasionally, LSLP
may compile faster than SLP (e.g., in 453.calc-z3). This can
be attributed to: (i.) the formation of fewer, but larger, SLP-
graphs, due to its ability to extract more isomorphism, and
(ii.) reduced instruction count due tomore successful vector-
ization (leading to faster execution of passes that follow).

6 Related Work

High Performance Computing (HPC) has relied on vector
machines to accelerate HPC workloads for several decades,
while scientific workloads have been accelerated by both
commercial [19, 26] and experimental [11, 19, 26] vector ma-
chines. General purpose CPUs have also adopted vectoriza-
tion technology through the use of short SIMD vector in-
structions [10]. Graphics processors (GPUs) [15] implement
similar vector dataphaths for high throughput.

6.1 Loop Auto-Vectorization

Auto-vectorization techniques have traditionally focused on
vectorizing loops [30]. The basic implementation conceptu-
ally strip-mines the loop by the vector factor and widens
each scalar instruction in the body to work on multiple data
elements. Many fundamental problems of loop vectorization
have been addressed by early work the Parallel Fortran Con-
verter [2, 3] and others [7, 12, 29]. Since then, numerous
improvements to the basic algorithm have been proposed
in the literature and implemented in production compilers,
e.g. [8, 17, 18, 24].

6.2 SLP Auto-Vectorization

The original SLP technique was introduced by Larsen and
Amarasinghe [13]. Similar straight-line code algorithms have
been implemented in compilers such as GCC [9] and LLVM,
with Bottom-Up SLP (Rosen et al. [25]) beingwidely adopted
due to its low run-time overhead and its good coverage. In
this paper we use the LLVM implementation of this state-of-
the-art SLP algorithm as the baseline.
Since the original SLP work, several improvements have

been proposed. Shin et al. [27] propose an SLP-based frame-
work that makes use of predicated execution to successfully
vectorize code with control-flow. Barik et al. [5] propose a
back-end vectorizer within the instruction selection phase,
which makes use of dynamic programming to achieve a su-
perior vector code generation. The Park et al. [20] approach
succeeds in reducing the overheads associated with vector-
ization such as data shuffling and inserting/extracting ele-
ments from the vectors. Liu et al. [16] present a vectoriza-
tion framework that improves SLP by performing a more
complete exploration of the instruction selection spacewhile
building the SLP graph. Porpodas et al. [23] propose a tech-
nique that pads the scalar code with redundant instructions,
to convert non-isomorphic instruction sequences into iso-
morphic ones, thus extending the applicability of SLP. In
[22], the SLP region is pruned to scalarize instructions that
harm the vectorization cost, while in [21] a larger unified
SLP region is used, that overcomes limitations associated
with the inter-region communication and unreachable in-
structions. Finally, Zhou et al. [32] present a vectorization
technique that reduces the data re-organization overhead by
considering both intra- and inter-loop parallelism, while in
[31], they present a technique that enables vectorization of
SIMD widths that are not supported by the target hardware.
LSLP is orthogonal to these techniques. It is the first al-

gorithm, that we are aware of, that: (i.) exploits the commu-
tative property to generate longer isomorphic instruction
sequences and (ii.) uses look-ahead information for better
selecting the instructions to be included in the SLP graph.

7 Conclusion

We presented LSLP, an improved SLP-based vectorization
algorithm that focuses on commutative operations. Firstly,
it extends the core of the algorithm and its main graph data
structure to form multi-nodes of chains of commutative op-
erations of the same type. Secondly, it introduces a more
powerful operand reordering schemewhichmakes informed
decisions based on instructions deeper in the code. Both
contributions improve the effectiveness of the algorithm in
forming isomorphic instruction sequences, leading to bet-
ter vectorization coverage and improved performance. LSLP
was implemented in LLVM, and improves performance on
a real machine with little compilation-time overhead.
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