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Abstract

Clustered architectures have been proposed as a solution to the
scalability problem of wide ILP processors. VLIW architectures,
being wide-issue by design, benefit significantly from clustering.
Such architectures, being both statically scheduled and clustered,
require specialized code generation techniques, as they require ex-
plicit Inter-Cluster Copy instructions (ICCs) be scheduled in the
code stream. In this work we propose CAeSaR, a novel instruc-
tion scheduling algorithm that improves code generation for such
architectures. It combines cluster assignment, instruction schedul-
ing and inter-cluster communication reuse all in one single unified
algorithm. The proposed algorithm improves performance by any
phase-ordering issues among these three code generation and op-
timization steps. We evaluate CAeSaR on the Mediabenchll and
SPEC CINT2000 benchmarks and compare it against the state-of-
the-art instruction scheduling algorithm. Our results show an im-
provement in execution time of up to 20.3%, and 13.8% on average,
over the current state-of-the-art across the benchmarks.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; C.1.1 [Processor Architectures]: Single Data
Stream Architectures

General Terms Algorithms, Experimentation, Performance

Keywords Cluster Assignment, Instruction Scheduling, Clustered
VLIW

1. Introduction

Very Long Instruction Word (VLIW) processors are by definition
wide-issue high-performance processors that execute instructions
in a parallel fashion, as dictated by the compiler through the long
instruction words. They are statically scheduled processors, where
Instruction Level Parallelism (ILP) is determined by the instruction
scheduler in the compiler. They have been used in a wide range
of domains: in servers (Intel’s Itanium/Itanium?2 [23, 33]), in em-
bedded systems as DSPs (Texas Instruments’s VelociTI, HP/ST’s
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Lx [10], Analog’s TigerSHARC [12], BOPS’ ManArray [30]), in
GPUs (AMD’s VLIW-5 architecture on Radeon GPUs and in APUs
[3]) and as general purpose processors (e.g., Transmeta’s Crusoe
[7, 19]). The simple hardware design and the good power/perfor-
mance ratio makes VLIW processors an attractive alternative to
dynamically-scheduled processors. Compared to the latter, VLIW
designs are simpler since they do without the dynamic scheduling
hardware. Instead they rely on the compiler and more specifically
on an aggressive instruction scheduler to extract ILP.

Clustering is a way of improving the scalability of processor
designs by keeping the shared resources as small and local as pos-
sible. Architects have applied clustering to both statically (e.g.,
[10, 32, 34]) and dynamically scheduled (e.g., [18, 29]) proces-
sors to either achieve higher performance (by increasing the clock
speeds) and/or improve the power characteristics of the design.
More recently, clustering has been the major design decision in
experimental, highly scalable ILP architectures such as the EDGE
(TRIPS) architecture [4, 14] and WiDGET [36].

VLIW processors are good candidates for clustering, as they
are wide-issue by design. Clustered VLIW processors (as in Figure
1.a) can reach higher issue-widths, higher clock speeds and lower
energy consumption than their non-clustered counterparts [35]. In
a clustered design, the global resources are partitioned into multi-
ple private ones (Figure 1.a). The Register File (RF) is partitioned
and the Functional Units (FUs) are grouped, such that each cluster
contains a few FUs and a local slice of the RF. The communication
between clusters takes place through scalable point-to-point com-
munication buses. Clustered architectures can scale up (meaning
that we can replicate the clusters) to large numbers, without affect-
ing the clock frequency. The clustered VLIW processor, is statically
scheduled, so it is up to the compiler’s code generator to optimize
the code for it.

1.1 Clustered VLIW Architectures

Clustered VLIWSs rely on the compiler to orchestrate the communi-
cation between clusters, using explicit Inter-Cluster Copy instruc-
tions (ICCs). In such machines, it is up to the code generator to
optimize the schedule and the communication. Examples of such
architectures are the RAW processor [34] (with explicit send/re-
ceive instructions instead of our bi-directional ICCs) and the HP/ST
architecture [10].

Internally these machines are designed in such a way that the
instructions of each cluster can only access the local register file.
Whenever some data is needed from a distant register file, an ICC
instruction has to be issued to bring the data in. This is a good
design decision for two reasons:

i) Converting an architecture into a clustered one requires only
a small ISA change for adding the ICC instruction.
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Figure 1. A 4-cluster 4-issue clustered VLIW architecture (a). The
instruction schedule in (b) corresponds to the code in (c).

ii) Scaling up the clustered design requires no major re-design
of the ISA, apart from the ICCs that need to access a larger register
space.

A design with no ICCs would require that instructions have ac-
cess to all remote registers. This would have the drawback that con-
verting a non-clustered processor to a clustered one would require a
significant ISA change affecting all instructions with a register ad-
dressing mode, since more register address bits would be required
per instruction for accessing the remote register files. Moreover,
scaling up to more clusters would require a modification of similar
magnitude. Therefore the clustered design with ICCs is preferred.

An example of a clustered machine is shown in Figure 1. It is
composed of 4 clusters, each with a register file of 32 GP registers
(the Floating Point (FP) and Predicate (PR) register files are not
shown) and one issue slot capable of executing Arithmetic (ALU),
Load/Store (L/S), Floating Point (FPU) and Inter-Cluster Copy
(ICC) instructions.

The code sequence of Figure 1.c will run on the clustered ma-
chine as in Figure 1.b. The ADD instruction r2=r1+r33 is assigned
to cluster0O, and therefore it can not access register r33 that belongs
to clusterl. It therefore has to be modified to r2=rl+r3, where 13
is local to clusterQ. The data is transferred from clusterl to clusterQ
by the ICC r3=r33, which is the only instruction capable of ac-
cessing registers belonging to different clusters. Any inter-cluster
communication is associated with an inter-cluster latency, that of
the latency of the ICC instruction.

It might seem that clustered architectures have an additional
overhead compared to their non-clustered counterparts: that of the
inter-cluster delay. In reality there is an advantage. The clustered
design, with the explicit inter-cluster delays, lets the clustered ar-
chitecture operate at higher frequencies within a cluster compared
to monolithic non-clustered designs [35].

1.2 Code Generation

Code generation for clustered architectures differs from the tra-
ditional one for non-clustered machines. It requires an additional
cluster assignment pass that decides on the cluster that each instruc-
tion will be executed at. The difference is shown in Figure 2.a and
2.b. Cluster assignment tags each instruction with a cluster number
tag. The cluster assignment algorithm decides on the cluster with
the inter-cluster communication latencies and the per-cluster hard-
ware resources in mind. After each cluster is tagged with a cluster
number, the instruction sequence gets scheduled by the instruction
scheduler just as in traditional code-generation.

ICC instructions are required for correct execution. They are
inserted by the instruction scheduling pass and are placed before
each instruction that belongs to one cluster but reads a register from
a different cluster. The ICC transfers the remote register value to a
local register and then the instruction using the value is modified to
use the local register instead of the remote one.

The challenge for the code generator is to optimally balance
communication and computation since ICC instructions compete
with other regular instructions for the same resources (issue slots).
It is this harder resource allocation problem, not present in the non-
clustered VLIWSs, that existing code-generation schemes are not
designed to handle effectively.

Optimized code generation for clustered architectures requires
that ICC instructions be optimized away. This can be done by re-
using the data brought in by past ICCs instead of bringing them
again multiple times. We refer to this optimization as Communi-
cation Reuse or ICC-reuse. This is a critical optimization for a
clustered architecture where the inter-cluster communication is a
critical resource. None of the existing approaches reuse ICCs.

1.3 Contributions

In our work we show that clustered architectures require an im-
proved instruction scheduling algorithm that unifies all clustering,
scheduling and ICC-reuse. The reason why all these phases should
be unified is that otherwise a phase-ordering problem exists that
leads to sub-optimal solutions:

e If clustering is done separately from instruction scheduling then
many ICCs may be generated at scheduling time that will harm
performance. This has been shown in [28]. Therefore, a unified
clustering + scheduling pass is required (Figure 2.c).

e If the unified scheduling+clustering is done separately from the
communication reuse (ICC-reuse) (Figure 2.d) then the cluster-
ing+scheduling decisions will be based on the assumption that
all ICCs exist in the schedule, which will not hold after the ICCs
get reused. This can lead to bad clustering/scheduling decisions.
A unified clustering + scheduling + ICC-reuse algorithm, how-
ever, will provide the best solution (Figure 2.e).

In this paper we introduce CAeSaR, a unified instruction
scheduling algorithm, that improves code-generation for clustered
architectures where inter-cluster communication is a critical re-
source. In more detail our contributions are:

e Identification and quantification of ICC overhead.

e Introduction of the first unified instruction scheduler for clus-
tered VLIW processors that performs all clustering, scheduling
and communication minimization in a single algorithm.

e A detailed comparison against the state-of-the art across a wide
range of benchmarks and showing that the approach performs
better.

In the following sections, we first motivate our work through
a motivating example (Section 2), we then describe in detail the
methodology and the CAeSaR algorithm (Section 3). Then we
briefly describe the experimental setup (Section 4), we present the
experimental results (Section 5), and we discuss the related work
on the topic (Section 6). We finally conclude in Section 7.

2. Motivation

Existing code generation schemes do not optimize the inter-cluster
communication. In the motivating example that follows, we show
the shortcomings of the existing state-of-the-art and how we im-
prove it with the CAeSaR algorithm.
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The example is based on the Data Flow Graph (DFG) of Fig-
ure 3.f mapped on both a monolithic non-clustered (Figure 3.a)
and clustered (Figures 3.b-e) architecture. The example shows the
schedules for both architectures. The non-clustered one is shown as
a reference. The example focuses mainly on the schedules for the
clustered architecture generated by i) a naive decoupled scheduler
(Figure 3.b), ii) the state-of-the-art (Figure 3.c) UAS [28] and iii)
the proposed CAeSaR scheduler (Figure 3.e). Figure 3.d is an inter-
mediate step between the state-of-the-art and CAeSaR which helps
us get more insights on the workings of CAeSaR. The architecture
of the example is a dual-issue dual-clustered (that is single-issue per
cluster) architecture with a single cycle inter-cluster delay, meaning
that the earliest a dependent instruction can execute on the remote
cluster is current_cycle + 2. The Data Flow Graph of Figure 3.f
contains both True and False dependencies. The False ones do not
imply any data communication to their successors, they just denote
an ordering. To help visualize the compilation process for each of
these schedules, Figure 2 shows the compilation passes involved in
each case.

In what follows we introduce each optimization individually
and we discuss its impact on the instruction schedule (Figure 3).

i. The first schedule in Figure 3.a is the schedule obtained on a
non-clustered VLIW architecture by applying instruction schedul-
ing (Figure 2.a). This schedule is not split in clusters nor does
it contain any inter-cluster communication instructions (ICCs).

Cycle-wise it is the shortest (fastest) since there are no inter-cluster
overheads involved.

ii. From this point on we are concerned only with scheduling
for the clustered architectures. The same compilation technique as
in (i.), if applied on a clustered architecture leads to the schedule of
Figure 3.b. We refer to this as the naive “Decoupled” scheme. The
instructions are placed on the cluster that the clustering algorithm
dictates. Thatis: A,B,C,D,H, Eon CLOand F, G, 1, J on CL1. The
scheduling pass inserts the ICCs, which occupy many issue slots.
Since the scheduler cannot change the clustering decision, the final
schedule is full of unused slots. The need to insert ICC instructions
during scheduling creates a phase-ordering issue between cluster
assignment and instruction scheduling.

iii. Unifying the cluster assignment and the instruction schedul-
ing (UAS [28], Figures 2.c and 3.c) solves this phase-ordering prob-
lem. The clustering decision is now made while the code and the
ICC instructions get scheduled. UAS decides on the cluster that an
instruction will be scheduled at by taking into account the issue slot
occupancy of the ICCs in each case. The decision that UAS makes
is a much more informed one than of the previous decoupled ap-
proach. The resulting schedule is shown in Figure 3.c. This is the
current state-of-the-art.

iv. What is still missing from UAS is the reuse of data already
communicated to a cluster. This is possible in clustered VLIW
architectures because each cluster contains a local Register File.
Figure 3.c shows that two ICC instructions are in place, even
though both instructions F and H read the same value from A. This
is where the ICC-reuse pass takes action (Figures 2.d and 3.d).
It removes the redundant ICCs while making sure that H gets its
data from the already transmitted value. The resulting schedule has
fewer ICCs, but its size is still the same as that of UAS (iii.). This
step is an intermediate one.

v. CAeSaR (Figures 3.e and 2.e) integrates the ICC-reuse opti-
mization into a unified clustering, scheduling and communication
reuse algorithm. The unified approach makes more informed deci-
sions on clustering and scheduling as it is aware that not only ICC
instructions are required but also that some can be optimized away.
This removes the phase ordering issue between UAS (that is uni-
fied clustering + scheduling with ICC-insertion) and the ICC-reuse
pass. CAeSaR is therefore free of any phase ordering issues in all
clustering, scheduling with ICC-insertion and ICC-reuse. As shown
in Figure 3.e, CAeSaR makes an ICC-reuse-aware decision for in-
struction G, which gets scheduled on CL1 instead of CLO. This
leads to more compact schedules than UAS, or UAS+ICC-reuse.
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3. CAeSaR
3.1 High Level Overview

The CAeSaR scheduling algorithm unifies cluster assignment, in-
struction scheduling and communication reuse in a single unified
instruction scheduling pass. The algorithm’s structure is based on
the commonly used list scheduler. In short the algorithm sched-
ules all instructions in a single traversal of the DFG. It fills in
the scheduling slots cycle-by-cycle. Once a cycle is scheduled it
is never revisited. The code of the algorithm comprises two lev-
els of nested loops. The outer one iterates until all instructions in
the DFG are scheduled. The inner one iterates until the current
scheduling cycle is either full or no other instructions are ready
to be scheduled on it. The integration of cluster assignment and
communication reuse is done within the innermost loop. CAeSaR
can work with various clustering heuristics, but the implementa-
tion shown makes use of the Start-Cycle heuristic [9, 17] which,
according to [31], is the best for clustered architectures with low
inter-cluster communication delays (like the 1-cycle delay we con-
sider). Other heuristics such as the Completion-Cycle [9] or the
Critical-Successor [37] could also be used instead.

3.2 CAeSaR Main Body

Algorithm 1. CAeSaR scheduling algorithm.
1 /% Inl: Data Flow Graph (DFG)

2 Out: Scheduled Code. */
3 caesar ()
4 {

S /#While there are instructions unscheduledx/
6 while (instructions left to schedule)

7 update READY_LIST with ready+deferred instr
8 sort READY_LIST based on priorities

9 while (READY_LIST not empty)

10 INSN = the highest priority of READY_LIST
11 LIST_OF_CLUSTERS[] = possible clusters for INSN
<—on CYCLE
12 Sort LIST_OF_CLUSTERS[] using start_cycle()
13 while (unvisited clusters in LIST_OF_CLUSTERS([])
14 BEST_CLUSTER = first not visited
«—LIST_OF_CLUSTERS[]
15 /*Try scheduling INSN on best clusterx/
16 if (INSN can be scheduled on BEST_CLUSTER at
<CYCLE)
17 ICC_LIST = compute_ICCs(INSN, BEST_CLUSTER)
18 if (ICC_LIST != NULL)
19 Try scheduling ICCs of ICC_LIST before
—CYCLE
20 if (failed)
21 Tag BEST_CLUSTER as visited
22 continue /+ next cluster x/
23 Schedule ICCs in ICC_LIST
24 Tag INSN to be renamed with ICC
<—destination reg
25 if (INSN requires reg renaming)
26 INSN = register renamed INSN
27 Schedule INSN
28 Remove INSN from READY_LIST
29 /+*If scheduling failed defer to CYCLE+1x/
30 if (INSN unscheduled)
31 remove INSN from READY_LIST and re-insert it

< at CYCLE+1
32 /*READY_LIST is empty=*/
33 CYCLE ++

34}

The main body of the CAeSaR algorithm is listed in Algorithm
1. CAeSaR is based on list-scheduling, and therefore it is com-
posed of two nested loop levels: the outermost one that starts on
Algorithm 1 line 6 and the innermost on line 9. CAeSaR has a
third innermost nested loop (line 13) which iterates over all pos-
sible clusters to select the best one to schedule an instruction.

The outer loop (first) updates the ready list (line 7) with any new
ready instructions from the DFG or any deferred instructions from
a previous scheduling step. The ready list is then sorted based on
priority (line 8), which is usually the longest latency-weighted path
of the instruction node to the roots of the DFG.

The inner loop (second) (line 9) tries to fill up the current
scheduling cycles with as many instructions as possible. It first gets
the highest priority instruction from the sorted ready list (line 10),
then it forms a prioritized list of all clusters that INSN (INStruc-
tioN) could be scheduled at (lines 11 and 12). The sorting of the
list is done with the help of the clustering heuristic (start_cycle Al-
gorithm 3, see Section 3.4).

After the list of clusters is sorted, we step into the innermost
(third) loop (line 13). This loops over all clusters in the list and
on each iteration selects the first unvisited cluster. This is the clus-
ter with the highest priority according to the clustering heuristic
(BEST_CLUSTER in line 14) among the clusters that are not tried
out.

Once the BEST_CLUSTER is determined, the algorithm will
try to schedule INSN on that cluster. However, since ICCs may be
required (line 17, Section 3.3), scheduling on the BEST_CLUSTER
may fail, so the innermost loop (line 13) keeps checking all cluster
candidates until INSN gets scheduled (lines 19 to 22). If an ICC is
emitted or if an ICC is reused, then INSN has to be register renamed
to use the register written by the ICC. In either case, INSN gets
tagged with the appropriate register number (Algorithm 1 line 24,
Algorithm 2 lines 13 and 18 respectively). Renaming takes place
right before INSN gets scheduled (lines 25 and 26).

If INSN cannot be scheduled on any cluster, then INSN is
removed from the ready list and deferred until the next cycle (lines
29 to 31). The algorithm proceeds to the next cycle when all
instructions of the ready list have either been scheduled, or have
been deferred to a later cycle (lines 32 and 33).

3.3 Compute ICCs

The function that determines the list of ICCs required by the sched-
uled instruction (line 17 in Algorithm 1) is listed in Algorithm 2. If
we ignore reusing the ICCs, then this is done in the following steps:

1. Check all flow predecessors of INSN (lines 6 and 7) and for
each one of them determine the register REG_W used to pass the
value from the predecessor to INSN.

2. If INSN is tried on a cluster different than the predecessor’s
cluster, then an ICC is required to transfer the data to the con-
sumer’s cluster (line 9).

3. Create a new ICC instruction to copy the data across reg-
ister filess REG_INEW = REG_W (where REG_NEW is a register
mapped to INSN’s cluster) that transfers the value from one cluster
to the other (lines 15 and 16).

4. Append the newly created ICC instruction to the list of ICCs
required by INSN (line 17). This is the list that is returned by this
function.

5. Tag INSN to be renamed with REG_NEW when renaming is
done later on (line 18). This is required so that INSN will read the
value from new register, the target of the ICC.

6. Return the list of ICCs (line 21).

This approach, however, introduces many redundant ICCs.
Reusing the ICCs is described in Section 3.5.

3.4 Clustering Heuristic

Although CAeSaR can sort its LIST_OF_CLUSTERS (Algorithm
1 line 12) using any clustering heuristic (as it is decoupled from
the actual heuristic used), in this implementation we use the Start-
Cycle heuristic [9]. This is because this heuristic works best for
clustered VLIW architectures with inter-cluster latency of 1 cycle
[31]. The actual heuristic is orthogonal to our approach, since ICC
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Algorithm 2. Get list of ICCs required for INSN scheduled on
CLUSTER.

1 /*Inl: Instruction INSN

2 Out: List of ICCs required, NULL if empty=*/

3 compute_ICCs (INSN, CLUSTER)

4 {

5 ICC_LIST = NULL

6 for all DEP flow backward dependencies of INSN

7 PRO = producer of DEP

8 REG_W = register written by PRO and read by INSN

9 if (cluster of PRO != CLUSTER)

10 /% Read ICC Reuse Data Structure x/

11 if (REG_W already present in CLUSTER)

12 REG_OLD = register that holds the value of
<»REG_W on CLUSTER

13 Tag INSN to be renamed with REG_OLD

14 continue

15 REG_NEW = new free register

16 ICC = ‘‘REG_NEW = REG_W’’

17 append ICC to ICC_LIST

18 Tag INSN to be renamed with REG_NEW

19 /% Update ICC Reuse Data Structure #*/

20 Record that REG_W exists in CLUSTER as REG_NEW

21 return ICC_LIST

22}

Algorithm 3. Return the earliest cycle that an instruction can be
scheduled at on CLUSTER.

1 /#Inl: Instruction INSN

2 In2: The cluster CL that INSN is tried on

3 Out: Earliest cycle INSN can be scheduled on CLx/

4 start_cycle (INSN, CL)

5 {

6 start_c = 0

7 for all DEP backward dependencies of INSN

8 PRO = producer of DEP

9 PRO_CYCLE = cycle that PRO is scheduled at

10 PRO_CL = cluster of PRO

11 if (CL != PRO_CL)

12 if (DEP is flow dependence)

13 pro_start_c = PRO_CYCLE + communication delay
—from PRO_CL to CL

14 start_c = MAX (start_c, pro_start_c)

15 else

16 start_c = MAX (start_c, PRO_CYCLE + 1)

17 return start_c

18 }

reuse is supported by our framework, no matter the decision of the
clustering heuristic. Therefore, we can plug in any other clustering
heuristic, such as the Completion-Cycle (CC) [9] or the Critical
Successor (CS) [37].

The algorithm for the Start-Cycle heuristic is listed in Algorithm
3. It can be easily calculated by looping over all INSN’s backward
dependencies (Algorithm 3 line 7) and determining the earliest
cycle that INSN can get its data inputs from its predecessors (lines
8to 16).

3.5 ICC Reuse

Re-using the ICCs means that if an ICC instruction has transmitted
a valueA to clusterX some time in the past, then any future use of
valueA in clusterX should not require an additional ICC instruction.
Instead the instruction that uses valueA is modified to reuse the
value transmitted by the earlier ICC. This is a feature unique to
CAeSaR that was neglected by previous scheduling algorithms
because they targeted architectures where the ICC instructions did
not compete with actual program instructions for issue slots.
Reusing the ICCs impacts performance in two distinct ways:

1. It reduces the count of the instructions that get scheduled
(code size reduction).

2. It creates new opportunities for more ILP.

Both of these mechanisms contribute to the performance im-
provements. An example of this is shown in Figure 3. Saving up
a single ICC instruction (that of cycle 3 in Figure 3.d), not only
decreases the code size (1 less ICC) , but it also creates new op-
portunities for greater ILP: the empty slot created by re-using the
ICC later gets occupied by instruction G. As will be shown later
in Section 5.3, due to these phenomena, and particularly due to the
second, a small decrease in the ICC count can have a much larger
impact on performance.

Support for ICC-reuse requires some changes in the scheduling
algorithm:

1. Keeping track of the ICCs that bring in data to each cluster.
Map both registers of a new ICC (the source and the destination) to
enable easy future reuse of the ICCs (Algorithm 2 line 20). This
data gets stored in a dictionary structure which uses the source
register as the key and the destination register as the content. We
refer to it as “ICC Reuse Data Structure”. This is visualized for
simplicity as a table of two columns (one for the source register
and one for the destination) (Figure 4). For example if the ICC “Rx
= Ry” is emitted, then the entry Rx—Ry is inserted into the Data
Structure (see Figure 4).

2. Disabling the action of emitting a new ICC if data can be
reused (Algorithm 1 line 18). This is done by querying the ICC
Reuse Data Structure (Algorithm 2 line 11). If an entry exists for
the register read by the instruction to be scheduled, then no ICC
should be emitted.

3. Register renaming. Once an ICC is to be reused, then INSN
has to be register renamed so that it reads the appropriate register.
The register is determined in Algorithm 2 lines 12 and INSN is
tagged with it in line 13. It later gets renamed as normally in
Algorithm 1 line 26.

3.6 Register File Coherence

Keeping the distributed register files of a clustered processor co-
herent is required for correct execution. The problem is similar to
the cache coherence problem in shared-memory multiprocessors.
The baseline approach (UAS) issues an ICC copy whenever data
from a distant cluster is required. This guarantees correctness as
the value brought in is always the latest one. Problems can occur
when reusing ICCs (like in CAeSaR). Reusing the data brought in
by earlier ICCs could lead to using wrong data if the the original
cluster has updated the register with a more recent value.

To further explain the problem, we follow the example of Figure
4. In this example a register (Rx) is updated twice in clusterQ
(instructions A and D) and used twice in cluster]l (instructions B
and C), with the 2nd update on clusterQO (instruction D) being in
between the two uses in cluster] (Figure 4.a instructions B and C).
A non-coherent implementation is shown in Figure 4.b. The second
use on clusterl (instruction C) reuses the data brought in to cluster1
by the existing ICC1. This is incorrect, since Rx is updated before
C by instruction D.

In CAeSaR, we solve this coherence problem in a similar way
as in the write-invalidate cache coherence protocols, but at compile
time. Once a register R is updated on a cluster, the entry for R on
the ICC Reuse Data Structures of all other clusters are invalidated.
This is shown in the example of Figure 4.c. Upon the second
register update (instruction D: Rx=...) of clusterO, the ICC Reuse
Data Structure of cluster! invalidates the entry “Rx—Ry”. As the
algorithm encounters instruction C, it realizes that it cannot reuse
Ry, and therefore it has to issue a new ICC2.

The complexity of this write-invalidate approach is small. Ac-
cessing the ICC Reuse Data Structure is done in constant time,

2013/7/25



cluster0 , clusterl
I

A: Rx=... ,

1 ICC1: Ry=Rx

I |

Ve

Ry

ICC Reuse

Data Structure

cluster( : clusterl cluster0 : clusterl
I
A: Rx=... | A: Rx=... !
- I
1 1
) ! ICC1: Ry=Rx
| . l
! 1
| B: ..=Rx 'B: ..=Ry
D: Rx=... ! D: Rx=... , .
1
I
IC: 2Rx 'C ...]Rx
WRONG

for clusterl

a. Before ICCs

b. Wrong: No Coherence

c. Correct (CAeSaR): Register Coherence

Figure 4. The Register File Coherence.

regionX dominates
regionY

regionX does
NOT dominate regionY

a. Can inherit reuse data b. Cannot inherit reuse data

Figure 5. The ICC reuse challenges across scheduling regions.

Complexity
Algorithm Worst-Case | Observed
UAS (baseline) | O(N?) O(N)
CAeSaR O(N?) O(N)

Table 1. Complexity of UAS (baseline) and CAeSaR algorithms.

since it is an indexed access to an array. Therefore, the whole pro-
cess of invalidating all entries on an N-clustered machine has a
complexity of N-1, a small single-digit integer. This process runs
on every instruction that updates a register, and therefore the total
overhead of the Register File Coherence is linear to the program
size.

3.7 ICC Reuse Across Scheduling Regions

CAeSaR performs ICC-reuse at the scheduling-region level (EBBs)
[26]. The data brought in to a cluster by an ICC, could be reused
outside the region as well. This global-reuse approach has further
complications, as shown in Figure 5. If the scheduler moves from
regionX to regionY and regionX dominates regionY (Figure 5.a),
then it is correct to inherit reuse information from regionX to re-
gionY. Otherwise (Figure 5.b) this is not allowed as it will break
the program semantics. CAeSaR currently completely flushes the
ICC Reuse Data Structure upon a new scheduling region and there-
fore does not deal with this extra complexity.

3.8 Complexity Analysis

This section calculates and compares the complexity of CAeSaR
and UAS.

To calculate the complexity of the CAeSaR algorithm we need
to examine its source code (Algorithms 1, 2 and 3). For the com-
putation we consider an input DFG of N nodes. The CAeSaR
Scheduling algorithm has 3 levels of nested loops :

Instruction
Scheduling

Reg. Allocation

GCC-4.5.0

Figure 6. The compilation flow.

1. The outer loop iterates until all instructions in the DFG are
scheduled. In each iteration a single cycle gets scheduled. If on
average S (with S < issuewidth) instructions get scheduled, then
this loop iterates N/S times. On each iteration of this loop, the
ready list is sorted using quicksort. Given an average ready list size
of R, this usually costs R x logR and R? in the worst case.

2. The middle loop iterates until all instructions in the ready list
are examined for scheduling. Therefore it iterates R times. It sorts
the list of clusters based on the Start-Cycle clustering heuristic.
The Start-Cycle heuristic iterates over all flow predecessors of
the instruction to be scheduled and gets calculated once for each
cluster. If P is the number of flow predecessors and C'is the number
of clusters, then creating and sorting the list of clusters (using
quicksort) costs C'P + ClogC' in the usual case and CP + C*
in the worst case.

3. The innermost loop iterates over all clusters in the order spec-
ified by the clustering heuristic. This loop always iterates C' times
(constant). On each loop iteration, compute_ICCs() is called (Algo-
rithm 2), which iterates over all predecessors of the instruction to
be scheduled. Therefore it iterates C'P times.

The complexity of CAeSaR scheduling is computed as: N/S x
R x (logR + ClogC + 2CP) in the usual case and N/S x R x
(R + C? 4+ 2CP) in the worst case. In all practical cases all S,
R and P are small constants with typical values: S < 3, R < 10,
P < 10. This is an O(N) complexity. The worst-case scenario
involves S = 1, R = N and P = N which leads to complexity
O(N?).

UAS has a similar 3-nested loop structure and exhibits similar
complexity. For all practical cases, the complexity of UAS is O(NV)
and in the worst-case it is O(N?). Therefore both schedulers have
practically the same complexity. The complexities are summarized
in Table 1.

4. Experimental Setup

The target architecture is a clustered VLIW architecture based on
the IA64 (Itanium)[23] ISA. The target architecture used for the
evaluation, even though IA64-based, is a generic one, as it is not
constrained by the IA64 bundles [33]. Our target architecture sup-
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Target Architecture: IA64 based clustered VLIW

Issue width: 4

Instr. Types per issue slot | ALU, L/S, FPU, ICCs
Clusters: Configurable: 2, 4
Instruction Latencies: Same as Itanium?2 [23]
Inter-Cluster Latency: 1 cycle

Register File: 128GP, 64FP, 64PR in total

Table 2. Target Architecture Configuration.

Mediabench II | SPEC CINT2000
cjpeg 164.gzip

djpeg 175.vpr

h263enc 181.mcf

h263dec 186.crafty
mpeg2enc 197.parser
mpeg2dec 255.vortex
jpg2000enc 256.bzip2
jpg2000dec 300.twolf

Table 3. Benchmarks.

ports issuing any type of instruction (ALU/Load-Store/FPU/ICC)
at any issue slot. The target configuration used for our measure-
ments is shown in Table 2.

We implemented CAeSaR in the instruction scheduling pass
(haifa-sched) of GCC-4.5.0 [1] compiler for IA64. CAeSaR runs
just before register allocation, as shown in Figure 6. To evaluate
CAeSaR’s performance, we measure the total size (in cycles) of the
schedules generated by the compiler under CAeSaR and compare
it against two state-of-the-art clustering algorithms (UAS [28] and
CS [37]).

We evaluated CAeSaR on 8 of the Mediabench II video [13]
benchmarks and 8 of the SPEC CINT2000 [2] as listed in Table 3.
Since our compiler is a heavily modified one, we only managed
to fully compile the benchmarks shown. All benchmarks were
compiled with several optimizations enabled (-O2).

5. Results and Analysis
5.1 Overview

We evaluate CAeSaR by measuring several metrics that give us
some vital insights. We measure: i) the ICC instruction count over-
head over the original program instructions (Figures 7.a and 8.a),
ii) the count of ICC instructions issued by each scheduler (Figures
7.b and 8.b), iii) the total cycle count of all the scheduled regions
(Figures 7.c and 8.c), and iv) the number of original (without ICCs)
instructions per cluster (Figure 9), for the two machine configura-
tions: (4-cluster, 4-issue) and (2-cluster, 4-issue).

We directly compare CAeSaR against the two state-of-the-art
unified cluster assignment and scheduling algorithms: (UAS) [28],
and Critical-Successor (CS) [37]. We also measure the intermediate
scheme: decoupled UAS + ICC reuse (as shown in Figure 3.e).
The measurements for UAS + ICC, though less interesting from
the performance perspective, provide some vital insights on the
workings of CAeSaR.

5.2 ICC Overhead

One of the most important results is the ICC instructions overhead
in the baseline case (Figures 7.a and 8.a). It shows that ICC instruc-
tions are indeed a significant portion of the scheduled instructions.
On average, ICCs add a 19.4% overhead on the instruction count
for the 4-cluster machine and about 8.4% for the 2-cluster machine.
This strongly motivates CAeSaR’s goal to decrease the number of
ICCs emitted during instruction scheduling.

Figures 7.b and 8.b show the normalized number of ICCs for
both hardware configurations. Although the intermediate ICC-

Reuse step does save about 12% and 10% of the ICCs on average
for each configuration respectively, CAeSaR achieves savings of
about 33% and 32%.

The number of ICCs that a scheduler emits relates to the perfor-
mance of the generated code. Ignoring the ICC-reuse optimization,
there are two interesting opposing phenomena that affect perfor-
mance: i) The more the ICCs, the more aggressive the scheduler is
and the more likely it is to generate high performance code. ii) The
more the ICCs, the more the overhead due to ICCs consuming is-
sue slots. Achieving good performance requires a solution that bal-
ances between these two phenomena. In that respect UAS is more
conservative as it issues fewer ICCs compared to CS. However, the
performance of both schedulers is very close (Section 5.3).

The ICC-reuse optimization allows the schedulers to be more
aggressive at scheduling instructions across clusters since there are
more ICC slots available for more useful computation. These slots
enable either i) more ILP as more useful ICCs can be issued, or
ii) more useful computations using the free issue slots for further
progressing the program state. Therefore we expect that CAeSaR,
which generates fewer ICCs, will generate more compact sched-
ules.

5.3 Performance

The total schedule length for CAeSaR, UAS and CS is shown in
Figures 7.c and 8.c. These results show that CAeSaR generates
more compact schedules than the state-of-the-art in all benchmarks.
CAeSaR outperforms UAS by up to 20.3% and 13.8% on average
for the 4-cluster machine. The results for the 2-cluster machine are
equally impressive with an average of 8.4% improvement against
UAS. CS performs similarly to UAS, which is expected as i) the
heuristic defaults to UAS for several cases and ii) it does not reuse
ICC:s either.

The two machine configurations (2-cluster and 4-cluster) have
the same issue width (4-issue) and the same inter-cluster delay (1-
cycle). However, due to the fact that the 2-cluster machine can
accommodate 8 execution units (2x ALU, 2xL/S, 2xFP, 2xICC,
twice as many as the 4-cluster machine) in each cluster, most gen-
eral purpose applications fit nicely in a single cluster and there-
fore the distant cluster is under-utilized. Therefore the ICCs present
in the schedule for that machine are fewer (Figure 8.a vs 7.a) and
therefore the performance improvements CAeSaR can accomplish
by ICC-reuse are smaller. It is up to the hardware designer to de-
cide on the trade-off between issue per cluster and the operating
frequency.

5.4 Phase-ordering

UAS is ICC-aware, meaning that the algorithm considers the com-
munication as scheduled resources. But UAS is not ICC-reuse
aware, meaning that it cannot calculate the communication reuse
while scheduling. Therefore, when we combine the stages UAS
+ ICC-reuse, we end up with a sub-optimal solution: UAS will
be conservative at distributing instructions across clusters because
of the inter-cluster cost associated with each communication even
though at the following stage ICC-reuse will remove some of the
communication instructions, freeing up some slots. The end result
is a sub-optimal schedule containing some empty slots (those that
were reused, like in Figure 3.e CL1, cycle3), which could have been
used for other useful instructions, or other useful communication.
This is exactly the problem that CAeSaR solves by unifying
scheduling, clustering and communication minimization into a sin-
gle algorithm. In contrast to UAS, CAeSaR is more effective at
distributing instructions across clusters (Figure 9) as long as this
leads to better performance. CAeSaR can calculate the communi-
cation cost (including the communication reuse) more accurately
than UAS. The ILP richer code, that CAeSaR generates, is faster

2013/7/25



% Instruction Count Normalized to Non-ICCs in UAS for the (4-cluster,4-issue,1-cycle inter-cluster delay) VLIW

€100% n

il E B EEEEEEEEEEEEDR R =

HE BN EEEEENEEEEEN
EEEEEEEEEERN

80%
60%

o N N N
ME SN ENSEEREEEENEN
I e e e e e

0%
s, Yo, s, /796 s, s, Ros, P, s, '8, ', 19> <5, <%, S0,
O T Ve, g, ege 6'09 900 900 geﬁ Yoy g, Porse 'VOr,e be/pe Moy

% Instruction Count

Benchmarks

.a The ICC overhead. The percentage of ICCs compared to Non-ICC original program instr. for UAS.

Norm. Number of ICCs for the (4-cluster,4-issue,1-cycle inter-cluster delay) VLIW

g 1.60
& 140
8 120
) (1) 88 CAeSaR =
8 060
= 040
£ 0.20
§’ 0.00 [ A2, /Ig ey 2 78, 185 19> <85 g, S0y, A
o, Yo 5. 65 M, Mos, Loa, Po. 5 6.6, 5, "6, 7%, %
% Y Ny, Vo, 02, @99 ?00069000 G or "y %y, "%@‘ e, %op oy’
Benchmarks
.b The count of ICC instructions per scheduler normalized to the UAS scheduler.
Cycles for the (4-cluster,4-issue,1-cycle inter-cluster delay) VLIW
£ HE
] _
> ICC-R
o 1 . q CAeeSuasR =
3 g
N
T
E
£ o
Z 0.00

'8, 785 79> é’ss 956 Sop, @

%m”?s/’?s%%ggé‘s 6,
S0 8o <03, 347 899 ‘99@ éoooeéooo g% Yoy %, o,%, p% 0,7)( %9 ’%/,

Benchmarks

.c Total schedule cycles of each scheduler, normalized to UAS.

Figure 7. Measurements for the 4-cluster, 4-issue, 1-cycle inter-cluster delay VLIW machine.

n

% Instruction Count Normalized to Non-ICCs in UAS for the (2-cluster,4-issue,1-cycle inter-cluster delay) VLIW
€100%
80%
60%
40%
20%

0%

% Instruction Count

7, 7 7, B 2 3
5 74 Ss 9> <85 6‘6 00
gep Yor oy g, ﬂ%‘e,.yo”e* b%e "oy

Benchmarks

.a The ICC overhead. The percentage of ICCs compared to Non-ICC original program instr. for UAS.

Norm. Number of ICCs for the (2-cluster,4-issue,1-cycle inter-cluster delay) VLIW

€
3 1.60
8 1.40 R =
8 120 ICC-Reuse mm
) (1) 88 CAeSaR ==
8 060
= 040
£ 0.20
5 0.00
z e, Y, "6 /796‘ "os, e, Loz, Po 5, %81, "85, 792, 05, 6, 0, Uy
o e, 30 ege 899 ?00069000 gelp Loy ”70/ ’e;;« ,oefsg 0/7* e’l’é’ %/f
Benchmarks
.b The count of ICC instructions per scheduler normalized to the UAS scheduler.
Cycles for the (2-cluster,4-issue,1-cycle inter-cluster delay) VLIW
3
o
>
(&)
el
o
N
T
E
< 0.
Z 0.00

'8, 785 79> é’ss 956 Sop, @

%m”?s/’?s%%ggé‘s 6,
0 oo <03, 347 899 ‘99@ éoooeéooo g% Yoy %, o,%, p% 0,7)( %9 ’%/,

Benchmarks

.c Total schedule cycles of each scheduler, normalized to UAS.

Figure 8. Measurements for the 2-cluster, 4-issue, 1-cycle inter-cluster delay VLIW machine.

8 2013/7/25



and requires less frequent inter-cluster communication. Figure 9
shows that CAeSaR is consistently more effective at scheduling
more instructions in the less used clusters and fewer in the more
busy one. It achieves this by making good use of the slots saved by
the unified ICC-reuse mechanism.

If we examine Figures 7.b and 8.b, we can observe that CAe-
SaR consistently reuses more ICCs compared to UAS+ICC-reuse
(32.6% vs 12.1% and 32.0% vs 10.0% on average respectively).
This result is a strong indication that the phase-ordering problem
between clustering, scheduling and ICC-reuse is handled effec-
tively by CAeSaR. Not only do ICCs get reused, but the clustering
decision adapts as well so that even fewer ICCs are required.

6. Related Work

A comprehensive taxonomy of inter-cluster communication imple-
mentations on VLIW architectures is presented in [35]. The de-
sign features (such as operating frequency, performance, energy
consumption, etc.) of each implementation are quantified and dis-
cussed.

Clustered Architectures: Pioneering work on code generation
for clustered architectures appeared in [9], where the Bottom-Up-
Greedy (BUG) cluster-assignment algorithm was introduced. This
work differs from later cluster assignment algorithms in the order
the instructions are considered for clustering, which in this case
is a critical-path based ordering. The main heuristic used is the
Completion-Cycle, which calculates the completion cycle of an
instruction on each of the possible cluster candidates.

Much work on clustered machines has been done in the context
of the Multiflow compiler [21]. It reused to a large extent Ellis’
work on clustering [9]. The various design points (heuristic tuning,
order of visiting the instructions, etc.) of instruction scheduling,
including the cluster assignment, are discussed in detail in this
work.

The work in [6] uses clustering to optimize the design of the
register files. The goal is to partition the register file so as to have
more register files with fewer ports each. Cluster assignment and
ICC insertion takes place after scheduling the code since the input
of this code generator is the output of a compiler that targets an
ideal VLIW core. This, however, is sub-optimal since the ICCs
should be re-scheduled so that the inter-cluster latencies can be
hidden. The clustering heuristic used tries to minimize the inter-
cluster communication. This however is a poor clustering heuristic
as it is not guided by the schedule length. This work is the first
to mention an optimization that minimizes the count of ICCs by
reusing the copied data, however, no implementation details are
given.

The work in [8] provides an iterative solution to clustering. Each
iteration of the algorithm measures the schedule length by perform-
ing instruction scheduling and by doing a fast register pressure and
ICC count estimation. Unlike in our approach, the ICCs are not
optimized away. This being an iterative algorithm, it has a long
run-time and its use is not practical in production compilers.

The first work that combines cluster assignment and instruction
scheduling was [28]. Unlike BUG [9], this is a list-scheduling
based, not critical-path based solution. The Completion Weighted
Predecessor (CWP) clustering heuristic behaves very similarly to
the Start-Cycle heuristic (first implemented in BUG [9]). The inter-
cluster bandwidth is considered as a scheduling resource, but the
Inter-Cluster Copy instructions (ICCs) are not optimized away.

CARS [17] is a combined scheduling, clustering, and regis-
ter allocation code generation framework based on list schedul-
ing. Depth and height heuristics are used to guide the algorithm.
Scheduling is based on a variant of percolation scheduling [27] and
as such it is capable of performing both acyclic and cyclic schedul-
ing, similar to [24, 25].

Unified Performance
2| 2182
512 |< |
21289
Algorithm | © | @ | & <
BUG [9] v [ x X x | Low
UAS [28] ViV ox x | Med
CS [37] ViV ox X | Med
CARS[17] | vV | vV | vV | X | Med
CAeSaR ViV ox v/ | High

Table 4. Summarized features of CAeSaR and others.

The RAW clustered architecture ([20, 34]) communicates data
across clusters with send/receive instructions which are similar
to ICCs. The scheduler visits instructions in a topological order
and uses the completion time heuristic to guide the process. The
authors, without identifying the challenges associated with ICCs,
do mention that a multi-cast inter-cluster communication operation
could be used as an optimization, without providing any further
details. This, however, is a hardware-based approach, specific to the
RAW architecture. CAeSaR provides a generic solution that works
on standard clustered architectures.

Recently, a new clustering heuristic was introduced by [37].
This differs from the previously mentioned ones in that, under cer-
tain conditions, the clustering decision is based on earliest schedule
cycle of the most critical successor of the current instruction. Sim-
ilarly to the UAS heuristic, it does not try to minimize the ICCs in
any way. This heuristic quite often defaults to the UAS, which is
why its performance is similar to it. In our evaluation we refer to
this heuristic as Critical-Successor (CS).

LUCAS [31] is a unified clustering and scheduling algorithm
that aims to achieve good performance across a wide-range of
inter-cluster latencies. It is powered by a hybrid Start-Cycle and
Completion-Cycle heuristic. Its performance is compared against
a variety of schemes, including UAS and CS and it is shown to
outperform the best performing of them across a wide-range of ICC
latencies. Unlike CAeSaR, ICCs are not re-used.

The main instruction scheduling algorithms proposed in the
literature are summarized and compared to CAeSaR in Table 4.

Clustered superscalars, such as [18, 29], use simpler cluster-
ing algorithms. A review of the state-of-the-art dynamic heuristics
is presented in [5]. Such heuristics make use of the Register De-
pendence Graph and steer instructions based on the cluster where
their operands where steered to. Being dynamic approaches, they
also try to balance the run-time load of the clusters.

Instruction Scheduling for VLIWs was pioneered by [11]
with the Trace-scheduling algorithm. This algorithm expands the
scheduling region beyond basic blocks to larger profile-guided re-
gions called traces. These large regions provide enough instruc-
tions for the scheduler to re-order effectively. A less complicated
but highly effective alternative to traces are the superblocks [16].
These regions simplify the scheduler’s work by only allowing for
outgoing control edges from within a region. VLIW architectures
with support for predicated execution can benefit from hyperblock
scheduling [22].

Several instruction schedulers form regions not based on pro-
filing information. This is useful in two cases: i) when applica-
tions have unpredictable control flow and ii) when profiling is im-
practical. Such schemes [24, 25, 27] perform global code hoisting
across multiple control paths concurrently and perform scheduling
on the resulting code blocks. Extended Basic Blocks (EBBs) [26]
form tree-like regions which are then scheduled by a normal list
scheduler. Treegions [15] are also tree-shaped, and are similar to
EBBs. CAeSaR is implemented on top of GCC’s [1] Haifa Sched-
uler which operates on EBBs.
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Instruction Distribution Across Clusters Normalized to (UAS, CLO) for the (4-cluster, 4-issue, 1-cycle ICC delay) machine
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Figure 9. Distribution of original instructions across clusters.

7. Conclusion

This paper proposes CAeSaR, a new high-performance instruction
scheduling algorithm for clustered VLIW architectures. The pro-
posed algorithm is the first to solve all three problems: i) cluster
assignment, ii) instruction scheduling and iii) inter-cluster commu-
nication reuse, within a single unified algorithm. CAeSaR not only
minimizes the count of the Inter-Cluster Copy instructions, but also
generates more compact code. Our evaluation shows that CAeSaR
generates shorter schedules than the state-of-the-art across a range
of benchmarks and machine configurations.
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